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Despite the intense theoretical and experimental effort, an understanding of the superconducting pairing
mechanism of the high-temperature superconductors leading to an unprecedented high transition temperature
Tc is still lacking. An additional puzzle is the unknown connection between the superconducting gap and the
so-called pseudogap which is a central property of the most unusual normal state. Angle-resolved photoemis-
sion spectroscopy �ARPES� measurements have revealed a gaplike behavior on parts of the Fermi surface,
leaving a nongapped segment known as Fermi arc around the diagonal of the Brillouin zone. Two main
interpretations of the origin of the pseudogap have been proposed: either the pseudogap is a precursor to
superconductivity, or it arises from another order competing with superconductivity. Starting from the t-J
model, in this paper we present a microscopic approach to investigate physical properties of the pseudogap
phase as well as the superconducting phase in the framework of a renormalization scheme called projector-
based renormalization method. This approach is based on a stepwise elimination of high-energy transitions
using unitary transformations. We arrive at renormalized “free” Hamiltonians for correlated electrons for both
phases. Our microscopic approach allows us to explain the experimental findings in the underdoped as well as
in the optimal hole doping regime. The ARPES spectral function along the Fermi surface turns out to be in
good agreement with experiment: For the pseudogap phase we find well-defined excitation peaks around �

=0 near the nodal direction, which become strongly suppressed around the antinodal point. The origin of the
pseudogap can be traced back to a suppression of spectral weight from incoherent excitations in a small �

range around the Fermi energy. In the superconducting phase, the order parameter turns out to have d-wave
symmetry with a coherence length of a few lattice constants. In good agreement with experiments, we find no
superconducting solutions for very small hole doping.
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I. INTRODUCTION

Since the discovery of superconductivity in the cuprates,1

enormous theoretical and experimental effort has been made
to investigate the superconducting pairing mechanism which
leads to an unprecedented high transition temperature Tc.

2–6

The generic phase diagram of the cuprates shows a wide
variety of different behavior as a function of temperature and
level of hole doping. In particular, with increasing hole dop-
ing away from half-filling, the physical properties com-
pletely change at the transition to the superconducting phase.
An additional puzzle is the unknown connection between the
superconducting gap and the so-called pseudogap which is a
central property of the most unusual normal state of the cu-
prates. In particular, the pseudogap has been subject to in-
tense debates.

Studies using angle resolved photoemission spectroscopy
�ARPES� have revealed several key features of the
pseudogap and the superconducting gap in the cuprates
by elucidating the detailed momentum and temperature
dependence.7–13 It was found that the pseudogap opens on a
part of the Fermi surface �FS� around the antinodal point,
leaving a nongapped FS segment known as a Fermi arc
around the nodal direction. The pseudogap also smoothly
evolves with decreasing temperature into the SC gap and
was, therefore, interpreted in favor of a “precursor pairing”
scenario.14,15 On the other hand, there are several experimen-
tal and theoretical reports which suggest a different origin for
the pseudogap, such as caused by another order which com-
petes with the superconducting order.8 Superconductivity is

usually understood as an instability from a nonsuperconduct-
ing state. Therefore, often in theoretical investigations, the
starting point was either the Fermi-liquid or the anti-
ferromagnetic phase at large or low doping. In this paper, we
take a different approach and only consider hole fillings, in
which either a superconducting or a pseudogap phase is
present.

A generally accepted model for the cuprates is the t-J
model which describes the electronic degrees of freedom in
the copper-oxide planes for low energies. Alternatively, one
could also start from a one-band Hubbard Hamiltonian as a
minimal model. However, for low-energy excitations, the lat-
ter model reduces to the t-J model so that both models are
equivalent. As our theoretical approach, we use a recently
developed projector-based renormalization method which is
called PRM.16 The approach is based on a stepwise elimina-
tion of high-energy transitions using unitary transformations.
We thus arrive at a renormalized “free” Hamiltonian for cor-
related electrons which can describe the pseudogap as well
as the superconducting phase. The obtained ARPES spectral
function along the Fermi surface is in good agreement with
experiment: For the pseudogap phase we find well-defined
excitation peaks around �=0 near the nodal direction which
are strongly suppressed around the antinodal point. However,
in the superconducting state the spectra display peaklike
structures which are caused alone by coherent excitations in
a small range around the Fermi energy. The origin of the
pseudogap can be traced back to a suppression of spectral
weight of the incoherent excitations in a small � range
around the Fermi energy. Therefore, the usual interpretations
of the pseudogap origin can not be held. Instead, the
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pseudogap is an inherent property of the unusual normal
state caused by incoherent excitations. The superconducting
order parameter turns out to have d-wave symmetry with a
coherence length of a few lattice constants. The basic feature
for the understanding of the superconducting pairing mecha-
nism in the underdoped regime is a characteristic electronic
oscillation behavior between neighboring lattice sites. The
oscillation becomes less important for larger � which agrees
with the weakening of the superconducting phase for larger
hole doping.

First, after a short introduction of the model in Sec. II, it
seems to be helpful to start from a short outline of the basic
ideas of our theoretical approach �PRM� in Sec. III. A review
of this approach has been given elsewhere.16 Then, in Secs.
IV and VI the PRM will be applied to the pseudogap phase
and the superconducting phase. The numerical results for
both phases will be discussed in Secs. V and VII, respec-
tively.

II. MODEL

A generally accepted model for the cuprates is the t-J
model. In particular, in the antiferromagnetic phase at small
doping, it has turned out that it can be used to describe the
electronic degrees of freedom at low energies. We adopt the
same model also for somewhat larger hole concentrations,
outside the antiferromagnetic phase, where the superconduct-
ing and the pseudogap phases appear,

H = − �
ij,�

tijĉi�
† ĉj� − ��

i�

ĉi�
† ĉi� + �

ij

JijSiS j ¬ Ht + HJ.

�1�

The model consists of a hopping term Ht and an antiferro-
magnetic exchange HJ. Here, tij stands for the hopping ma-
trix elements between nearest �t� and next-nearest �t�� neigh-
bors. Jij is the exchange coupling and � is the chemical
potential. The quantities

ĉi�
† = ci�

† �1 − ni,−��, ĉi� = ci��1 − ni,−�� �2�

are Hubbard creation and annihilation operators. They enter
the model since doubly occupancies of local sites are strictly
forbidden due to the presence of strong electronic correla-
tions. Note that the Hubbard operators restrict the unitary
space to states with only either empty or singly occupied
local sites. They obey nontrivial anticommutation relations

�ĉi�
† , ĉj���+ = �ij�����D��i� + ��,−��Si

�� , �3�

where the operator

D��i� = 1 − ni,−� �4�

can be interpreted as a projector which projects on the local
subspace at site i consisting of either an empty or a singly-
occupied state with spin �. Finally, ni�=ci�

† ci� is the local
occupation number operator for spin �, and Si

� is the �
= �1 component of the local spin operator

Si =
1

2�
��

�� ��ĉi�
† ĉi�, �5�

where �� ��=�	���
	 e	 is the vector formed by the Pauli spin

matrices. In Fourier notation, t-J model �1� reads

H = �
k,�

�
k − ��ĉk�
† ĉk� + �

q
JqSqS−q = Ht + HJ,


k = − �
i��j�

tije
ik�Ri−Rj�, Jq = �

i��j�
Jije

iq�Ri−Rj�. �6�

Note that for convenience, we shall somewhat change the
notation. From now on, all energies will be measured from
the chemical potential, i.e., 
k−� will be denoted by 
k.

III. PROJECTOR-BASED RENORMALIZATION
METHOD

Let us start with a short introduction to the PRM,17,16

which we shall use as our theoretical tool. The general idea is
as follows: The method starts from a decomposition of a
given many-particle Hamiltonian

H = H0 + H1 �7�

into an unperturbed part H0 and a perturbation H1. In H1, no
parts should be contained which commute with H0. There-
fore, H1 accounts for all transitions with nonzero energies
between the eigenstates of H0. The aim of the PRM is to
construct an effective Hamiltonian which has the same
eigenspectrum as H, and which can be solved. The first step
is to construct a new renormalized Hamiltonian H� which
depends on a given cutoff �,

H� = H0,� + H1,�, �8�

with renormalized parts H0,� and H1,�. Thereby, H� should
have the following properties: �i� The eigenvalue problem of
H0,� can be solved,

H0,��n�� = En
��n�� ,

where En
� and �n�� are the renormalized eigenenergies and

eigenvectors. �ii� From H1,�, all transition operators are
eliminated which have transition energies �with respect to
H0,�� larger than the cutoff energy �. As shown in Refs. 16
and 17, the renormalization step from H to H� can be done
by use of a unitary transformation. Therefore, the eigenspec-
trum of H� is the same as that of H.

The realization of the renormalization starts from the con-
struction of H�. Here, the knowledge of the eigenvalue prob-
lem of H0,� is crucial. It can be used to define generalized
projection operators, P� and Q�,

P�A = �
m,n

�n���m���n��A�m����� − �En
� − Em

� �� ,

Q�A = �1 − P��A , �9�

which act on usual operators A of the Hilbert space. Note
that in Eq. �9� the vectors �n�� and �m�� are necessarily nei-
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ther low-nor high-energy eigenstates of H0,�. P� projects on
the part of A which consists of transition operators �n���m��
with excitation energies �En

�−Em
� � smaller than �, whereas Q�

projects on the high-energy transition operators of A.
In terms of P� and Q�, the property of H�, not to allow

transitions between eigenstates of H0,� with energy differ-
ences larger than �, reads

Q�H� = 0 or H� = P�H�. �10�

The effective Hamiltonian H� is obtained from the original
Hamiltonian H by use of a unitary transformation,

H� = eX�He−X�, �11�

where X� is the generator of the unitary transformation, and
condition �10� has to be fulfilled. The renormalization proce-
dure starts from the cutoff energy �=
 of the original model
H and proceeds in steps of width �� to lower values of �.
Every renormalization step is performed by means of a new
unitary transformation,

H�−�� = eX�,��H�e−X�,��. �12�

Here, the generator X�,�� of the transformation from cutoff �
to the reduced cutoff ��−��� has to be chosen appropriately
�see below�. In this way, difference equations are derived
which connect the parameters of H� with those of H�−��.
They will be called renormalization equations. The limit �

→0 provides the desired effective Hamiltonian H̃=H�→0
=H0,�→0. The elimination of all transitions in the original
perturbation H1 leads to renormalized parameters in H0,�→0.

Note that H̃ is diagonal or at least quasidiagonal and allows
to evaluate all relevant physical quantities. The final expres-

sion for H̃ depends on the parameter values of the original

Hamiltonian H. Note that H̃ and H have, in principle, the
same eigenspectrum because both Hamiltonians are con-
nected by a unitary transformation.

What is left is to find an appropriate expression for the
generator X�,�� of the unitary transformation which connects
H� with H�−��. According to Eq. �10�, X�,�� is fixed by the
condition Q�−��H�−��=0. As is shown in Refs. 16 and 17,
one can find a perturbation expansion for X�,�� in terms of
H1. The lowest nonvanishing order reads

X�,��
�1� =

1

L0,�
�Q�−��H1,�� + ¯ . �13�

Here, L0,� is the Liouville operator, defined by the commu-
tator L0,�A= �H0,� ,A�, for any operator quantity A. Note
that Eq. �13� can further be evaluated, in case the decompo-
sition of Q�−��H1,� into eigenmodes of L0,� is known. For-
mally written, we decompose

Q�−��H1,� = �
	

F�,��
	 , where L0,�F�,��

	 = ��,��
	 F�,��

	 ,

�14�

so that X�,��
�1� is given by

X�,��
�1� = �

	

1

��,��
	 F�,��

	 . �15�

IV. RENORMALIZATION APPROACH FOR THE
PSEUDOGAP PHASE

A. Renormalization ansatz

Our aim is to apply the PRM to the t-J model which is a
generally accepted model for the low-energy properties of
the cuprate superconductors. We consider a regime with
moderate hole dopings. The hole concentrations should be
large enough for the system to be outside the antiferromag-
netic phase but small enough to be in the metallic phase. Our
first aim is to find the decomposition of the Hamiltonian into
an “unperturbed” part H0 and into a “perturbation” H1. We
assume that the hopping element t between nearest neighbors
is large compared to the exchange coupling J. Therefore, Ht
is the dominant part of the Hamiltonian in the metallic phase
and should be included in H0. However, also HJ has a part,
which commutes with the hopping term, and which will be
called HJ

�0�. Note that this part of HJ will not lead to transi-
tions between the eigenstates of Ht. Therefore, Ht and HJ

�0�

together form the unperturbed Hamiltonian H0. The remain-
ing part of HJ does not commute with Ht and forms the
perturbation H1. Thus, we can write

H0 = Ht + HJ
�0�, H1 = HJ − HJ

�0�.

In the framework of the PRM, the perturbation H1 will be
integrated out by use of a unitary transformation. In lowest-
order perturbation theory, the generator of the unitary trans-
formation X�,�� is given by Eq. �15� and relies on the de-
composition of HJ into the eigenmodes of L0. However, it
will be impossible to find the exact decomposition of HJ due
to the presence of Hubbard operators in Ht. Therefore, we
have to apply approximations. For this purpose, we start by
decomposing the electronic spin operator

Sq =
1

	N
�
��

�� ��

2 �
i

eiqRiĉi�
† ĉi� �16�

into eigenmodes of Lt instead of into eigenmodes of L0.
Here, Lt is the Liouville operator corresponding to the hop-
ping part Ht of H0. The exchange HJ is given by a sum over
products of spin operators Sq ·S−q. Therefore, the decompo-
sition of Sq into eigenmodes of Lt can be used to find an
equivalent decomposition of HJ.

The easiest way to decompose Sq is to derive an equation
of motion for the time-dependent operator Sq�t�, where the
time dependence is governed by Ht,

Sq�t� = eiHttSqe−iHtt = eiLttSq. �17�

Due to Eq. �3�, the first time derivative reads

d

dt
Sq = −

i
	N

�
��

�� ��

2 �
i�l

tile
iqRi�ĉl�

† ĉi� − ĉi�
† ĉl�� ,

=
i

	N
�
��

�� ��

2 �
i�l

tile
iqRi�1 − eiq�Rl−Ri��ĉi�

† ĉl�. �18�

It can be interpreted as the hopping of a hole from some site
l to a neighboring site i and vice versa. The second derivative
is characterized by a twofold hopping,
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d2

dt2Sq = −
1

	N
�
i�l

til
2�eiqRl − eiqRi��SlP0�i� − SiP0�l��

−
1

2	N
�
��

�
i�j

�
j��i�l�

tiltlj�eiqRi − eiqRl�

� 
�� ���ĉj�
† D��l�ĉi� + ĉj,−�

† Sl
�ĉi��

+ �� ��
* �ĉi�

† D��l�ĉj� + ci�
† Sl

−�ĉm,−��� . �19�

It has two different contributions. The first one describes the
hopping of the hole from i back to site l from which it origi-
nally came and, equivalently, the hopping from l back to i.
The second term in Eq. �19� stands for a twofold hopping
away from the starting site.

Let us discuss the first contribution to Eq. �19� in more
detail. The operators

P0�i� = �1 − ni,↑��1 − ni,↓� �20�

and P0�l� can be interpreted as local projectors on the empty
state at site i and site l, respectively. They assure that the
original sites i and l were empty before the first hop. Their
presence results from the fact that doubly occupancies of
local sites are strictly forbidden which is a consequence of
the strong correlations in the t-J model. In a further approxi-
mation, let us replace P0�i� and P0�l� by their expectation
values,

P0�i� ⇒ ��1 − ni,↑��1 − ni,↓��0 ¬ P0, �21�

which can be interpreted as the probability for a local site to
be empty. Without the second term in Eq. �19�, we are led to
the following equation of motion for Sq�t�:

d2

dt2Sq = − �̂q
2Sq. �22�

Obviously, differential equation �22� describes an oscillatory
motion of Sq�t� with frequency �̂q, where

�̂q
2 = 2P0�tq=0

2 − tq
2� = �̂−q

2 � 0, tq
2 = �

l��i�
til
2eiq�Rl−Ri�.

�23�

Note that the averaged projector P0=1−n also agrees with
the hole concentration � away from half-filling, i.e., P0=�
=1−n, where n is the electron filling.

Before carrying on with the physical implications of Eqs.
�22� and �23�, let us discuss the influence of the hole �or
electron� hopping in Eq. �19� to second-nearest neighbors
and also to more distant sites. As long as the dynamics of
Sq�t� is alone governed by the hopping Hamiltonian Ht, all
these hopping processes are important and would have to be
taken into account. For instance, for a state close to half-
filling outside the antiferromagnetic regime, a hole and a
neighboring electron can freely interchange their positions
for a system governed alone by Ht. The hole can easily move
through the lattice. However, the situation is different from
the case for which the dynamics is governed by H0=Ht
+HJ

�0�. Then, we have to decompose the perturbation H1 into
eigenstates of L0, where L0 is the Liouville operator corre-
sponding to H0. Thus, the dynamics of Sq is not governed

alone by the hopping Hamiltonian Ht but also by the yet
unknown commuting part HJ

�0� of HJ. However, in Appendix
A, it is shown that local antiferromagnetic spin fluctuations
due to HJ

�0� restrict the hole motion to neighboring sites. The
hopping to more distant sites is strongly suppressed by spin
fluctuations. Therefore, the former equation of motion �Eq.
�22�� for Sq�t� turns out to be a good approximation for the
case that the dynamics is determined by the full unperturbed
Hamiltonian H0 including the exchange part.

The arguments in Appendix A are based on the evaluation
of the dynamical spin susceptibility ��q ,�� as follows. Us-
ing the Mori-Zwanzig projection formalism ��q ,�� can be
written as

��q,�� =
− �q

2

�2 − �q
2 − ��q���

�q. �24�

Here, �q
2 � �̂q

2 is approximately the frequency, given in Eq.
�23�, and �q��� is the self-energy. The exact expression of
�q��� in terms of the Mori scalar product reads

�q��� =
1

�Ṡq�Ṡq�

QS̈q�

1

� − QL0Q − i�
QS̈q� . �25�

Here, Q is a generalized projection operator which projects

perpendicular to Sq and Ṡq �for details see Appendix D�. Due

to construction, the operator QS̈q in the “bra” and “ket” of
Eq. �25� corresponds to the second line in Eq. �19�, and
describes a twofold hopping away from the original site.
Therefore, the self-energy �q��� provides information about
the hopping processes between next-nearest-neighbor sites
and to more distant sites. In Appendix A the self-energy
�q��� is evaluated in a factorization approximation by in-
cluding the spin fluctuations from HJ

�0�. The result is shown
in Fig. 1, where the imaginary part of �q��� for a small q
vector is plotted �solid line� in the presence of spin fluctua-
tions due to HJ

�0�. As is seen, �q��� is rather small and al-
most � independent over a wide frequency range. Thus, the
only effect of �q��� is to give rise to a small damping and

0 1 2 3 4 5 6 7
0

0.5

1

1.5
J = 0
J = 0.2t

ω / ω

Σ q
/ ω

(ω
)

q
Im

q

^

^

FIG. 1. �Color online� Imaginary part of the self-energy I�q���
from Eq. �25� in the presence of spin fluctuations �J=0.2t, solid
line� and in the absence of spin fluctuations �J=0, dashed line�. The
q vector is fixed to q= �� /20,� /20�.
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lineshift of the resonances of ��q ,��. We have also repeated
the same calculation for I�q��� in the absence of HJ

�0�, i.e.,
when H0 is replaced by Ht �dashed line in Fig. 1�. A strong
� dependence is found for small q values around �=0. This
shows that long reaching hopping processes are important in
this case. From these findings, one can conclude that the
hopping to more distant than nearest neighbors is of minor
importance as long as the exchange part HJ

�0� is not neglected
in H0. A possible explanation would be that local antiferro-
magnetic correlations are still present at moderate hole dop-
ing outside the antiferromagnetic phase. They lead locally to
strings of spin defects which are well known from the hole
motion in the antiferromagnetic phase.

Let us come back to the discussion of the oscillation be-
havior in Eq. �19� which can be understood as follows. When
an electron hops to a neighboring site, it preferably hops
back to the original site since this was definitely empty after
the first hop. In contrast, the hopping to next-nearest-
neighbor sites is energetically unfavorable due to local anti-
ferromagnetic order. As will be shown below, the proportion-
ality of �̂q

2 �� turns out to be the basic feature for the
understanding of the superconducting pairing mechanism in
the cuprates. The oscillation becomes less important for
larger � which agrees with the weakening of the supercon-
ducting phase for larger hole doping.

The solution of Eq. �22� is easily found,

Sq�t� = Sq cos �̂qt +
1

�̂q
Ṡq sin �̂qt ,

=
1

2

Sq −

i

�̂q
Ṡq�ei�̂qt +

1

2

Sq +

i

�̂q
Ṡq�e−i�̂qt, �26�

where Sq=Sq�t=0� and Ṡq= d
dtSq�t=0� was used. From Eq.

�26�, the decomposition of Sq into eigenmodes of L0 can
immediately be identified,

L0�1

2

Sq �

i

�̂q
Ṡq�� = � �̂q�1

2

Sq �

i

�̂q
Ṡq�� , �27�

which leads to the intended decomposition of the exchange
HJ as follows:

HJ = �
q

JqSqS−q = �
q

Jq�A0�q� + A1�q� + A1
†�q�� ,

�28�

where

A0�q� =
1

2

SqS−q +

1

�̂q
2 ṠqṠ−q� ,

A1�q� =
1

4

Sq −

i

�̂q
Ṡq�
S−q −

i

�̂q
Ṡ−q� ,

A1
†�q� =

1

4

Sq +

i

�̂q
Ṡq�
S−q +

i

�̂q
Ṡ−q� , �29�

and

L0A0�q� = 0, L0A1�q� = 2�̂qA1�q� ,

L0A1
†�q� = − 2�̂qA1

†�q� . �30�

Here, an additional approximation was used. In deriving Eqs.
�30�, the eigenmodes of the two spin operators Sq ·S−q in the
expression for HJ were taken separately from Eq. �27�. In
this way, all local configurations were disregarded, where
two spin operators in local space are located on neighboring
sites. Thereby, a possible hopping between the two sites
would be obstructed. The inclusion of these processes would
need additional considerations. However, they would not
change our results substantially.

With Eqs. �29�, we have arrived at the intended decom-
position of the t-J model. The Hamiltonian

H = �
k�


kĉk�
† ĉk� + �

q
JqSqS−q �31�

can be decomposed into an unperturbed part H0 and into a
perturbation H1. It reads

H0 = Ht + H0,J ¬ �
k�


kĉk�
† ĉk� + �

q
JqA0�q� ,

H1 = �
q

Jq�A1�q� + A1
†�q�� . �32�

The aim of the PRM is to eliminate all transitions between
the eigenstates of H0 which are induced by H1. Let us as-
sume that all excitations with energies larger than a given
cutoff � have already been eliminated. Then, the renormal-
ized Hamiltonian H� should have the form

H� = �
k�


k,�ĉk�
† ĉk� + �

q
Jq,�P�SqS−q, �33�

however, with �-dependent prefactors 
k,� and Jq,�. More-
over, a projector P� was introduced which acts on operator
variables. It guarantees that only transitions with excitation
energies smaller than � remain from SqS−q.

The separation of H� into an unperturbed part H0,� and a
perturbation H1,� reads in analogy to Eq. �32�, H�=H0,�
+H1,�, with

H0,� = Ht,� + �
q

Jq,�A0,��q� + E�,

H1,� = �
q

Jq,���� − �2�̂q,����A1,��q� + A1,�
† �q�� , �34�

where we have used the �-dependent extension of relation
�30� in order to exploit the properties of P�. Note that the �
function ���− �2�̂q,��� in H1,� guarantees that only excita-
tions with transition energies �2�̂q,�� smaller than � contrib-
ute to H1,�. In Eq. �34�, Ht,� is the renormalized hopping
term from Eq. �33�, Ht,�=�k�
k,�ĉk�

† ĉk�. Also, the param-
eters Jq,�, �̂q,� and E� in Eqs. �34� now depend on �. More-
over, the new operators A�,��q���=0, �1� depend on �,
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A0,��q� =
1

2

SqS−q +

1

�̂q,�
2 Ṡq,�Ṡ−q,�� ,

A1,��q� =
1

4

Sq −

i

�̂q,�

Ṡq,��
S−q −
i

�̂q,�

Ṡ−q,�� ,

A1,�
† �q� =

1

4

Sq +

i

�̂q,�

Ṡq,��
S−q +
i

�̂q,�

Ṡ−q,�� , �35�

where �̂q,� and Ṡq,� are defined by

�̂q,�
2 = 2P0�tq=0,�

2 − tq,�
2 �, tq,�

2 = �
i��j�

tij,�
2 eiq�Ri−Rj�,

Ṡq,� =
i

�
�H0,�,Sq� �

i

�
�Ht,�,Sq� . �36�

B. Generator of the unitary transformation

To derive renormalization equations for the parameters of
H�, we have to apply unitary transformation �12� to H� in
order to eliminate excitations within a new energy shell be-
tween � and �−��. We use lowest-order expression �15� for
the new generator X�,��,

X�,�� = �
q

Jq,�

2�̂q,�

�q��,����A1,��q� − A1,�
† �q�� . �37�

Here, �q�� ,��� denotes a product of two � functions,

�q��,��� = ��� − �2�̂q,������2�q,�−��� − �� − ���� ,

which confines the elimination range to excitations with
�2�q,�−��� larger than �−�� and �2�̂q,�� smaller than �.
Roughly speaking, for the case of a weak � dependence of
��q,��, the elimination is restricted to all transitions within an
energy shell between �−�� and �. With Eq. �35�, the gen-
erator X�,�� can also be expressed by

X�,�� = − i�
q

Jq,�

4�̂q,�
2 �q��,����SqṠ−q,� + Ṡq,�S−q� . �38�

In the following, we restrict ourselves to the lowest-order
renormalization processes. Then, Jq,� will not be renormal-
ized by higher orders in J, and we can use Jq,�=Jq from the
beginning.

C. Renormalization equations

Unitary transformation �12�, applied to the renormaliza-
tion step between � and �−��, will be evaluated in pertur-
bation theory in second order in Jq,

H�−�� = eX�,��H�e−X�,�� = H�−��
�0� + H�−��

�1� + H�−��
�2� + ¯ ,

�39�

where

H�−��
�0� = �

k�


k,�ĉk�
† ĉk� + E� = Ht,� + E�,

H�−��
�1� = �

q
JqA0,��q� + �X�,��,Ht,��

+ �
q

Jq��� − �2�̂q,����A1,��q� + A1,�
† �q�� ,

H�−��
�2� =

1

2
�X�,��,�X�,��,Ht,��� + �

q
Jq�X�,��,A0,��q��

+ �
q

Jq��� − �2�̂q,����X�,��,A1,��q� + A1,�
† �q�� .

�40�

Let us first evaluate H�−��
�2� from second-order processes. The

commutators in Eq. �40� are explicitly evaluated in Appendix
A. Then, we can compare the obtained result with the formal
expression for H�−�� which has the same operator structure
as H�, with � is replaced by �−��. One obtains the follow-
ing renormalization equation from the second-order contri-
butions in Jq:


k,�−�� − 
k,� =
1

16N
�
q

Jq
2

�̂q,�
4 �q��,���

��
k+q,� + 
k−q,� − 2
k,���Ṡq,�Ṡ−q,��

+
3

2N
�
q�


 Jq

4�̂q
2�2

�q��,����
k,� − 
k−q,��2

� � 1

N
�

k���

�2
k�,� − 
k�+q,� − 
k�−q,��

��ĉk���
† ĉk�����nk−q�

�NL� , �41�

where we have defined

nk,�
�NL� = �ĉk�

† ĉk�� −
1

N
�
k�

�ĉk��
† ĉk��� �42�

as nonlocal part of the one-particle occupation number per
spin direction. An equivalent equation also exists for E�−��.
Note that in Eq. �41� an additional factorization approxima-
tion was used in order to extract all terms which have the

same operator structure as H�. The quantity �Ṡq,�Ṡ−q,�� is a
correlation function of the time derivatives of Sq which can
easily be evaluated from Eq. �B3�. Note that an additional
contribution to 
k,�−��, proportional to the correlation func-
tion �Sq ·S−q�, has been neglected. The remaining expectation
values in Eq. �41� have to be calculated separately. In prin-
ciple, they should be defined with the �-dependent Hamil-
tonian H� because the factorization approximation was em-
ployed for the renormalization step from H� to H�−��.
However, H� still contains interactions which prevent a
straight evaluation of �-dependent expectation values. The
best way to circumvent this difficulty is to calculate the ex-
pectation values with the full Hamiltonian H instead of with
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H�. In this case, the renormalization equations can be solved
self-consistently, as will be discussed below.

Note that renormalization �41� of 
k,� was evaluated from
the second-order part H�−��

�2� of Hamiltonian �40�. Thus, we
are led to

H�−�� = Ht,�−�� + H�−��
�1� + E�−��, �43�

where Ht,�−��=�k,�
k,�−��ĉk�
† ĉk�. What remains is to evalu-

ate the renormalization part H�−��
�1� in first order in Jq to

H�−��. First, the second term on the right-hand side of Eq.
�40� can be rewritten since

�X�,��,Ht,�� = − �
q

Jq�q��,����A1,��q� + A1,�
† �q�� .

Then, by combining the second and third terms, we find

H�−��
�1� = �

q
JqA0,��q� + �

q
Jq��� − �2�̂q,���

���� − �� − �2�̂q,�−�����A1,��q� + A1,�
† �q�� .

�44�

The excitation energies of A1,��q� and A1,�
† �q� are restricted

to �2�̂q,���� by the first � function in Eq. �44�. This con-
dition is automatically fulfilled by the second � function, in
the case that �2�̂q,�−��� only weakly depends on � and we
can replace � by �−��. By introducing the projector P�−��

on all low-energy transition operators with energies smaller
than �−��, we find

H�−��
�1� = �

q
JqP�−���A0,��q� + A1,��q� + A1,�

† �q�� ,

=�
q

JqP�−��Sq · S−q, �45�

where we have used representation �28� for the scalar prod-
uct Sq ·S−q,

Sq · S−q = A0,��q� + A1,��q� + A1,�
† �q� . �46�

Finally, for the total Hamiltonian H�−��, we obtain according
to Eq. �43�

H�−�� = �
k,�


k,�−��ĉk�
† ĉk� + �

q
JqP�−��Sq · S−q + E�−��.

�47�

Note that this expression completely agrees with the Hamil-
tonian at cutoff �, when � is replaced by �−��. The re-
quired decomposition into H0,�−�� and H1,�−�� is found as
follows. We use again relation �46�, with � replaced by �
−��, and rewrite H�−��

�1� as

H�−��
�1� = �

q
JqP�−���A0,�−���q� + A1,�−���q� + A1,�−��

† �q�� .

�48�

Using again Eq. �45�, we arrive at the renormalized Hamil-
tonian H�−��=H0,�−��+H1,�−�� in the following form,

H0,�−�� = Ht,�−�� + �
q

JqA0,�−���q� + E�−��,

H1,�−�� = �
q

Jq��� − �� − �2�̂q,�−����

��A1,�−���q� + A1,�−��
† �q�� . �49�

As expected, the renormalized Hamiltonians H0,�−�� and
H1,�−�� have the same operator structure as at cutoff �.
Therefore, we can formulate a renormalization scheme as
follows: We start from the original t-J model, where the en-
ergy cutoff is denoted by �=
. Starting from a guess for the
unknown expectation values, which enter renormalization
equation �41�, we proceed by eliminating all excitations in
steps �� from �=
 down to �=0. Thereby, the parameters
of the Hamiltonian change in steps according to renormaliza-
tion equation �41�. In this way, we obtain the following
model at �=0:

H�=0 = Ht,�=0 + �
q

JqP�=0Sq · S−q + E�=0,

=�
k�


k,�=0ĉk�
† ĉk� + �

q
JqA0,�=0�q� + E�=0. �50�

Note that in Eq. �50� the perturbation H1 is completely inte-
grated out. Only the part of the exchange, which commutes
with the hopping term, remains.

Unfortunately, due to the presence of the A0 term, the
Hamiltonian H�=0 can not be diagonalized. It does not yet
allow us to recalculate the expectation values. Therefore, a
further approximation is necessary which consists of a fac-
torization of the second term

�
q

JqA0,�=0�q� = �
q

Jq

2

SqS−q +

1

�̂q,�=0
2 Ṡq,�=0Ṡ−q,�=0� .

�51�

According to Appendix B, H�=0 can finally be replaced by a

modified Hamiltonian which will be denoted by H̃�1�,

H̃�1� = �
k�


̃k
�1�ĉk�

† ĉk� + �
q

Jq

2
SqS−q + Ẽ�1�, �52�

where the electron energy is modified according to


̃k
�1� = 
k,�=0 −

1

N
�
q

3Jq

4�̂q,�=0
2 �
k,�=0 − 
k−q,�=0�2nk−q,�

�NL� ,

�53�

and nk,�
�NL� is defined in Eq. �42�. Note that the operator struc-

ture of H̃�1� agrees with that of the original t-J model of Eq.
�31�. However, the parameters have changed. Most impor-
tant, the strength of the exchange coupling in Eq. �52� is
decreased by a factor 1 /2. This property allows us to start the
whole renormalization procedure again. We consider the
modified t-J model of Eq. �52� as our new initial Hamil-
tonian, which has to be renormalized again. The initial val-

ues of H̃�1� at cutoff �=
 are 
̃k
�1� and Jq /2. After the new
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renormalization cycle the exchange coupling of the new

renormalized Hamiltonian H̃�2� is again decreased by a factor
1 /2, until after a sufficiently large number of renormalization
cycles �n→�� the exchange operator completely disappears.
Thus, we finally arrive at a free model,

H̃ = �
k�


̃kĉk�
† ĉk� + Ẽ , �54�

where we have introduced as new notations H̃=H̃�n→��, 
̃k

= 
̃k
�n→��, and Ẽ= Ẽ�n→��. Note that the Hamiltonian H̃ now

allows us to recalculate the unknown expectation values.
With the new values, the whole renormalization procedure
can be started again until, after a sufficiently large number of
such overall cycles, the expectation values have converged.
The renormalization equations are solved self-consistently.
However, note that fully renormalized Hamiltonian �54� is
actually not a free model. Instead, it is still subject to strong
electronic correlations which are built in by the presence of
the Hubbard operators. Therefore, to evaluate the expectation
values, further approximations have to be made.

D. Evaluation of expectation values

The expectation values in Eqs. �41� and �42� are formed
with the full Hamiltonian. To evaluate expectation values for
operator variables A, we have to apply the unitary transfor-
mation also on A. According to Eq. �55�, we have

�A� =
Tr�Ae−�H�

Tre−�H = �A����H�
= �Ã�H̃, �55�

where we have defined A���=eX�Ae−X� and Ã=A��→0�.
Thus, additional renormalization equations for A��� have to
be derived.

As an example, let us consider the angle-resolved photo-
emission �ARPES� spectral function. It is defined by

A�k,�� =
1

2�
�

−�

�

�ĉk�
† �− t�ĉk��ei�tdt = �ĉk�

† ��L + ��ĉk��

�56�

and can be rewritten by use of the dissipation-fluctuation
theorem as

A�k,�� =
1

1 + e��IG�k,�� , �57�

where IG�k ,�� is the dissipative part of the anticommutator
Green’s function

IG�k,�� =
1

2�
�

−�

�

��ĉk�
† �− t�, ĉk��+�ei�tdt

= ��ĉk�
† ,��L + ��ĉk��+� .

The time dependence and the expectation value are formed
with the full Hamiltonian H, and L is the Liouville operator
corresponding to H. According to Eq. �55�, the anticommu-
tator Green’s function can be expressed by

IG�k,�� = ��ĉk�
† ���,��L� + ��ĉk�����+��, �58�

where now the creation and annihilation operators are also
subject to the unitary transformation. To evaluate A�k ,��,
we have to derive renormalization equations for ĉk���� and
ĉk�

† ���. According to Appendix C, the following ansatz for
ĉk���� can be used:

ĉk���� = uk,�ĉk� +
1

2N
�
qk�

vk,q,�
Jq

4�̂q,�
2 �

���

��� �� · �� ���

��
k�,� − 
k�+q,��ĉk�+q�
† ĉk��ĉk+q�. �59�

It can be justified from lowest-order perturbation theory.
Note that the �-dependence is transferred to the parameters
uk,� and vk,q,�. Also the quantities �̂q,� and 
k,� depend on �.
However, having in mind perturbation theory in J, this
�-dependence will be neglected in the numerical evaluation
of Sec. V below. According to Appendix C, the renormaliza-
tion equations for uk,� and vk,q,� read

uk,�−��
2 = uk,�

2 −
3

2N2 �
qk�


 Jq

4�̂q
2�2

��q��,����
k�,� − 
k�+q,��2

��
uk,�

2
�2

+ uk,�vk,q,��
� 
nk�+qmk� + nk+q�D + nk� − nk�+q��

+
3

4N2 �
qq�

Jq

4�̂q
2

Jq�

4�̂q�
2

��
k+q�,� − 
k+q+q�,���
k+q,� − 
k+q+q�,��

� 
vk,q�,��q��,��� + vk,q,��q���,����
uk,�

2

� 
nk+q��nk+q+q� − nk+q − D� − mk+qnk+q+q��

�60�

and

vk,q,�−�� = vk,q,� + uk,��q��,��� . �61�

The quantities nk and mk in Eq. �60� are the k-dependent
occupation numbers for electrons and holes per spin direc-
tion, which are formed with the full Hamiltonian H,

nk = �ĉk�
† ĉk��, mk = �ĉk�ĉk�

† � . �62�

In the following, we simplify the notation by suppressing the
spin index � in Eq. �62�. Renormalization equations �60� and
�61� for uk,�

2 and vk,q,�, together with ansatz �59� for ĉk,����,
enable us to evaluate nk and mk and also the ARPES spectral
function. With some initial guess for nk and mk, we start
from the parameter values of the original model at �=
,

uk,
 = 1, vk,q,
 = 0, �63�

and eliminate all excitations in steps �� from �=
 to �=0.
We end up with renormalized parameters which obey
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uk,�=0 � 1, vk,q,�=0 � 0.

Thus, after the renormalization, the annihilation operator
ĉk��=0�ª ĉk�

�1� at �=0 has the final form

ĉk�
�1� = uk,�=0ĉk� +

1

2N
�
qk�

vk,q,�=0
Jq

4�̂q
2 �

���

��� �� · �� ���

��
k�,�=0 − 
k�+q,�=0�ĉk�+q�
† ĉk��ĉk+q�.

As was discussed before, the Hamiltonian after the first

renormalization H̃�1� can not directly be used to recalculate

the expectation values nk and mk. In H̃�1�, there is still a part
of the exchange present, which is, however, reduced by a
factor 1 /2. Therefore, the renormalization has to be done

again by starting from H̃�1� as the new initial Hamiltonian.
Similarly, ĉk�

�1� can be considered as the new initial annihila-
tion operator, i.e., ĉk�

�1�= ĉk�
�1���=
�, with

uk,�=

�1� = uk,�=0, vk,q,�=


�1� = vk,q,�=0.

After n renormalization cycles, the exchange is scaled down
by a factor �1 /2�n. For the renormalization equation for uk,�

�n�

and vk,q,�
�n� , we obtain

�uk,�−��
�n� �2 = �uk,�

�n� �2 −
3

2N2 �
qk�


 Jq

4�̂q
2�2

��q��,����
k�,� − 
k�+q,��2

� �
uk,�
�n�

2n �2

+
uk,�

�n�

2n−1vk,q,�
�n� �

�
nk�+qmk� + nk+q�D + nk� − nk�+q��

+
3

4N2 �
qq�

Jq

4�̂q
2

Jq�

4�̂q�
2

��
k+q�,� − 
k+q+q�,���
k+q,� − 
k+q+q�,��

� 
vk,q�,�
�n�

�q��,��� + vk,q,�
�n� �q���,����

uk,�
�n�

2n

� 
nk+q��nk+q+q� − nk+q − D� − mk+qnk+q+q��

�64�

and

vk,q,�−��
�n� = vk,q,�

�n� +
uk,�

�n�

2n �q��,��� . �65�

Note that the factor 1 /2n was incorporated in vk,q,�
�n� , in order

to keep the shape of ansatz �59� unchanged,

ĉk�
�n���� = uk,�

�n� ĉk� +
1

2N
�
qk�

vk,q,�
�n� Jq

4�̂q
2 �

���

��� �� · �� ���

��
k�,� − 
k�+q,��ĉk�+q�
† ĉk��ĉk+q�. �66�

For n→�, we arrive at the fully renormalized operator

ĉk�
�n→���� = 0� = ũkĉk� +

1

2N
�
qk�

ṽk,q
Jq

4�̂q
2 �

���

��� �� · �� ���

��
̃k� − 
̃k�+q�ĉk�+q�
† ĉk��ĉk+q�, �67�

where ũk=uk,�=0
�n→�� and ṽk,q=vk,q,�=0

�n→�� . Using H̃, the expecta-
tion values nk and mk as well as the spectral function
IG�k ,�� can be evaluated. However, due to the strong cor-

relations in H̃, additional approximations will still be neces-
sary.

To evaluate the spectral function IG�k ,��, we start from
Eq. �58� for n→�, �=0

IG�k,�� = ��ĉk�
�n→��†�� = 0�,��L̃ + ��ĉk�

�n→���� = 0��+�H̃.

�68�

Here ĉk�
�n→����→0� is given by Eq. �67�. The time depen-

dence and the expectation value are defined with H̃, and L̃ is

the Liouville operator to H̃. For a state close to half-filling,
the following relation is approximately valid according to
Appendix B:

L̃ĉk� = �H̃, ĉk�� = − 
̃kĉk�. �69�

It means, in the case that the dynamics is governed by the

Hamiltonian H̃, in which no magnetic interactions are
present, a hole can move almost freely through the lattice.
Using Eqs. �67� and �68�, the spectral function IG�k ,�� then
reads

IG�k,��

= ũk
2D��� − 
̃k� +

3D

2N2 �
qq�
�
 Jqṽk,q

4�̂q
2 �2

�
̃k+q� − 
̃k+q+q��
2

� 
ñk+q+q�m̃k+q� + ñk+q�D + ñk+q� − ñk+q+q���

−
1

2

Jq

4�̂q
2

Jq�

4�̂q�
2 ṽk,qṽk,q��
̃k+q� − 
̃k+q+q���
̃k+q − 
̃k+q+q��

� 
�ñk+q� − m̃k+q�ñk+q+q� − ñk+q��ñk+q + D���
���� + 
̃k+q+q� − 
̃k+q� − 
̃k+q� . �70�

Note that in deriving Eq. �70�, an additional factorization
approximation was used. Thereby, an expectation value,
formed with six fermion operators, was replaced by a prod-
uct of three two-fermion expectation values. The new quan-
tities ñk and m̃k in Eq. �70�,

ñk = �ĉk�
† ĉk��H̃, m̃k = �ĉk�ĉk�

† �H̃

are again k-dependent occupation numbers for electrons and
holes per spin direction, However, they are defined with the

fully renormalized model H̃ instead of with H as in Eqs.
�62�. For ñk and m̃k, we use the Gutzwiller approximation18
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ñk = �D − q� + qf�
̃k� ,

m̃k = q�1 − f�
̃k�� with q =
1 − n

1 − n/2
=

�

1 − n/2
, �71�

where f�
̃k� is the Fermi function, f�
̃k�=��−
̃k� for T=0.
Note that m̃k is proportional to the hole filling �=1−n. Ob-
viously, the application of ĉk�

† on a Hilbert space vector is
nonzero only when holes are present. In contrast, ñk� does
not vanish even at half-filling.

According to Eq. �70�, the spectral function IG�k ,��
consists of two parts: The first one is a coherent excitation of
energy 
̃k with the weight ũk

2D. The second part describes
three-particle excitations. Also note that the sum rule

�
−�

�

d�IG�k,�� = ��ĉk�
† , ĉk��+� = 1 −

n

2
= D �72�

is automatically fulfilled by Eq. �70�. The sum rule is built in
by the construction of the renormalization equations for uk,�
and vk,q,� in Appendix C.

For finite temperature, a phenomenological extension of
the Gutzwiller approximation according to Ref. 19 will later
be used. Here, the Fermi function is replaced by

f�
̃k� =
1

1 + exp��q
̃k/w�k,n��
, �73�

where w�k ,n� is a weighting function in k space. It was
introduced in Ref. 19 in order to account for an overcom-
pleteness in the Gutzwiller approximation. It plays the role
of a k-dependent effective mass and is a quantity of order 1.

Finally, note that the static expectation values nk and mk,
defined in Eq. �62�, can also be evaluated from A�k ,�� or
IG�k ,��,

nk = �
−�

�

A�k,��d�

= �
−�

� 1

1 + e��IG�k,��d�, mk = D − nk. �74�

V. NUMERICAL EVALUATION FOR THE PSEUDOGAP
PHASE

Renormalization equations �41�, �53�, �64�, and �65� to-
gether with Eq. �74� form a closed system of equations,
which could be solved self-consistently. However, to sim-
plify the numerical evaluation, we calculate the expectation
values in Eqs. �41� and �53� with the renormalized Hamil-

tonian H̃ instead of with H. Within this approximation and
Gutzwiller approximation �71�, the renormalization equation
for the energy 
k,� reads


k,�−�� − 
k,� =
1

16N
�
q

Jq
2

�̂q,�
4 �q��,����
k+q,� + 
k−q,�

− 2
k,���ṠqṠ−q� +
3q2

8N
�
q

Jq
2

�̂q,�
4 �q��,���

�� 1

N
�
k�

�2
k�,� − 
k�+q,� − 
k�−q,��fk�
�NL��

� �
k,� − 
k−q,��2fk−q
�NL�, �75�

with

�ṠqṠ−q� = −
3q2

2

1

N
�
k�

�
̃k� − 
̃k�+q�2fk�
�NL�fk�+q

�NL� .

Here, fk
�NL� is the nonlocal part of the Fermi distribution,

fk
�NL�=1 / �1+e�
̃k�− �1 /N��k1 / �1+e�
̃k�. Remember that the

factor q as well as �̂q,�
2 are proportional to the hole concen-

tration �=1−n. Therefore, the renormalization contributions
to Eq. �75� are almost independent of � and turn out to be
very small. Therefore, from now on, the � dependence of

k,� and also of �̂q,� will be neglected.

A. Zero-temperature results

For the evaluation of the renormalization scheme, we
have used a sufficiently large number of renormalization
cycles in order to obtain self-consistency. We have consid-
ered a square lattice with N=40�40 sites and a moderate
hole doping, such that the system is outside the antiferro-
magnetic phase but not yet in the Fermi-liquid phase. Pos-
sible superconducting solutions are not considered.

The main feature of the normal state is the appearance of
a pseudogap which is experimentally observed in ARPES
measurements. A small next-nearest-neighbor hopping t�
=0.1t and an exchange constant J=0.2t between nearest
neighbors are assumed. The inclusion of a nonzero t� leads to
a Fermi surface �FS�, as sketched in the inset of Fig. 3. It
closely resembles the Fermi surface of noninteracting elec-
trons. The FS is determined from the condition 
̃k=0 for a
fixed value of the electron filling n=1−�. The temperature is
set equal to T=0. Let us first concentrate on the � depen-
dence of the spectral function IG�k ,��. In all figures, the
symmetrized function will be plotted in order to remove the
effects of the Fermi function on the spectra.

Figure 2 shows the PRM result for IG�k ,�� for two dif-
ferent hole concentrations in the underdoped regime �a� �
=0.03 and �b� �=0.075, for several k values on the FS be-
tween the nodal point near �� /2,� /2� and the antinodal near
�� ,0�. As the most important finding, one recognizes the
opening of a pseudogap for both hole concentrations, when
one proceeds from the nodal towards the antinodal direction.
On a substantial part of the FS, the spectra show a peaklike
behavior around �=0, indicating a Fermi arc of gapless ex-
citations. Note that our analytical results show a remarkable
agreement with findings from ARPES experiments in high-
temperature superconductors.9–12 Also additional peaks are
found in the nodal direction at lower binding energies which
are enhanced for �=0.075. In Fig. 3, the pseudogap on the
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FS is shown as a function of the angle �, where � is defined
in the inset of Fig. 3. The results are taken from Figs. 2�a�
and 2�b�. Note that for the smaller hole filling, the length of
the Fermi arc becomes smaller, whereas the pseudogap be-
comes larger. This behavior agrees with the known experi-
mental feature of a characteristic pseudogap temperature T*

which increases with decreasing hole filling.9,20

The � and k dependences of IG�k ,�� from Fig. 2 can
easily be understood from equation �70�,

IG�k,�� = �ũk�2D��� − 
k� +
3D

2N2 �
qk�
�
 Jq

4�̂q
2�2

�ṽk,q�2

��
k� − 
k�+q�2�ñk�+qm̃k� + ñk+q�D + ñk�

− ñk�+q�� + ¯ ���� + 
k�+q − 
k� − 
k+q� ,

�76�

where the dots �¯ indicate additional terms which are less
important. First, from renormalization equation �60� for uk,�

2 ,
one finds that its original value uk

2 =1 at �=
 is reduced by
renormalization contributions of order �−2 according to
uk,�−��

2 −uk,�
2 =−�� /�2. Thus, the weight of the coherent ex-

citation �ũk�2 becomes small for small � so that the spectral
function IG�k ,�� is dominated by the incoherent excitations
in Eq. �76�. What remains is to show that the different be-
havior of IG�k ,�� in the nodal and in the antinodal region
can be understood solely from the incoherent part of
Eq. �76�:

First note that the dominant contribution in Eq. �76� at
small � arises from the small q terms in the sum over q since
in the denominator �̂q

2 �q2. In the numerator, the factor
�
k�−
k�+q�2 is also proportional to q2 so that the combined
prefactor �Jq /4�̂q

2�2�
k�−
k�+q�2 behaves as �q−2. However,
the small q terms do not lead to a divergency in Eq. �76�
since the additional renormalization parameter ṽk,q

2 also van-
ishes for q→0. This behavior can be verified by a close
inspection of the renormalization equations �60� and �61� for
uk,� and vk,q,�. Next, let us use the small q expansion for the
energy difference


k� − 
k�+q = − 2t�qx sin kx� + qy sin ky�� . �77�

The excitations from the � function in Eq. �76� are given by

� = 
k� − 
k�+q + 
k+q

� 
k + 2t
qx�sin kx − sin kx�� + qy�sin ky − sin ky��� , �78�

which still depend on k�. There is also a k�-dependent factor
in the numerator which contributes to the intensity,

�
k� − 
k�+q�2 = 4t2�qx sin kx� + qy sin ky��
2 + O�q4� . �79�

Now, we are able to discuss the small � behavior of the
spectral function IG�k ,��, when the wave vector k is var-
ied:

�i� First, close to the antinodal point k= �0,��, the excita-
tion energy �Eq. �78�� reduces to

� = 
k� − 
k�+q + 
k+q � 
k − 2t�qx sin kx� + qy sin ky�� . �80�

By comparing Eq. �80� with Eq. �79�, one realizes that the
square of the frequency shift in Eq. �80� is identical to inten-
sity factor �79�. Thus, excitations with small shifts away
from the Fermi surface 
k=0 also have small intensities,
whereas those with large shifts have large intensities. This
explains naturally the pseudogap behavior at the antinodal
point, where a lack of intensity is found at �=0.

�ii� For the nodal point near k= �� /2,� /2�, the excita-
tions have energies

� = 
k� − 
k�+q + 
k+q

� 
k + 2t
qx�1 − sin kx�� + qy�1 − sin ky��� , �81�

whereas the intensity factor is again given by Eq. �79�. The
largest intensity is caused by terms in the sum over k� which
either belong to the region around k���� /2,� /2� or around
k���−� /2,−� /2�. In the first case, the excitations �Eq.
�81�� reduce to ��
k, whereas intensity factor �79� is given
by 4t2�qx+qy�2. Thus, from this k� region, one obtains exci-
tations directly at the Fermi surface. For the second k�
region, the excitation energies are given by ��
k+4t�qx
+qy�. The intensity factor is the same as before. Thus, similar
to the antinodal point, the square of the excitation shift away
from the Fermi surface 
k=0 is proportional to the corre-
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sponding intensity. Therefore, from these k� terms no inten-
sity is expected at �=0. To summarize, an excitation peak at
�=0 is expected for wave vectors k at the antinodal point
from the first k� regime, discussed above. In contrast, for
wave vector k at the antinodal point a pseudogap arises. This
explains the pseudogap behavior of the ARPES spectral
function and leads to an understanding of the spectra of Fig.
2. In Fig. 4, the spectral function is plotted for a larger hole
concentration �=0.09. The remarkable new feature is the oc-
currence of a narrow coherent excitation at �=0. Note that
for this hole concentration, the weight D�ũk�2 of the coherent
excitation is no longer negligible as in the preceding cases
since the renormalization contributions �1 /�2 to uk,�

2 are
less important for larger �. By increasing �, the coherent
peak gains weight at the expense of the incoherent excita-
tions. We also expect a broadening of the coherent peak due
to a coupling to other degrees of freedom such as phonons or
impurities.

In Figs. 5�a� and 5�b�, the spectral functions are shown for
two different cuts in the Brillouin zone. In both figures, kx is
fixed and ky is varied thereby crossing the FS. In panel �a�,
where kx=�, the cut runs along the antinodal region through
the FS at kF��� ,0.07��. Note that the pseudogap is re-
stricted to a small k range around the antinodal point. It
disappears for larger ky values away from the antinodal
point, in agreement with the earlier discussion on the origin
of the pseudogap. The spectra along a cut in the nodal region
are shown in panel �b�, where kx=� /2. Apart from the domi-
nant excitation which corresponds to the gapless excitation
on the FS in Fig. 2, also weaker excitations are found at
lower binding energies. The complete peak structure is
shifted almost unchanged through the FS, when ky is varied.
The energy distance between the primary and the secondary
peak slowly decreases by proceeding along the FS from the
nodal point to the antinodal point, until finally both peaks
disappear when the antinodal region is reached. Such a
double-peak structure with the same properties along the FS
was observed in underdoped cuprate superconductors.13 Fi-
nally, one point might still be worth mentioning. For fixed �,
the spectrum in k space is much broader than what one
would expect for free electrons. Thus, the electron occupa-

tion �ĉk�
† ĉk��=�d��1+e���−1IG�k ,�� depends only weakly

on k. This feature is consistent with the former expression
�Eq. �71�� for ñk, where the Gutzwiller approximation was
used. Remember that the expectation value ñk was defined

with the renormalized Hamiltonian H̃ and not with H.

B. Finite temperature results

Next, we discuss the influence of the temperature on the
one-particle spectra in the normal state. For the hopping to
next-nearest neighbors, we use a somewhat larger value t�
=0.4t. This leads to an enhanced curvature of the Fermi sur-
face, as it is observed in most of the copper oxides supercon-
ductors. The other parameters remain unchanged. Figure 6
shows the symmetrized spectral function IG�k ,�� for two
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different temperatures �a� T=0 and �b� T=0.08t. The hole
concentration for all curves is �=0.04. Possible supercon-
ducting solutions are again suppressed. The results are
shown for different k vectors on the Fermi surface between
the nodal �top� and the antinodal point �below�. For all tem-
peratures, a separation of the Fermi surface into two seg-
ments is found, as it was already discussed in the foregoing
section: �i� For k vectors around the nodal points, IG�k ,��
shows strong excitations at �=0 �black curves�. They form
the Fermi arc. �ii� The other segment is given by k vectors,
for which IG�k ,�� shows a pseudogap around �=0 �red
curves�. From Figs. 6�a� and 6�b�, one can see that the length
of the Fermi arc increases with increasing temperature. This
increase is equivalent to a reduction of the pseudogap region.
For instance, for the larger temperature T=0.08t, the
pseudogap is restricted to a quite small region around the
antinodal point. Note that this temperature behavior is in
good agreement with recent ARPES experiments.9 A com-
parison of the spectral functions at the antinodal point for the
two different temperatures �lowest curves in Figs. 6�a� and
6�b�� shows the influence of T on the pseudogap: With in-
creasing T, the pseudogap is filled up with additional spectral
weight, whereas the magnitude of the gap �i.e., the distance
between the maxima on the � axis� remains almost constant.
Also this temperature behavior is verified experimentally.9 A
characteristic temperature T* can be defined at which the
pseudogap is completely filled up, and the Fermi arc extends
over the whole Fermi surface. This temperature T* was al-
ready introduced above and is called pseudogap temperature.
For the present case, T* is approximately T*�0.1t.

The pseudogaps, taken over from Figs. 6�a� and 6�b�, are
shown in Fig. 7 for three different temperatures as function
of the Fermi surface angle �. Note the strong increase in the
pseudogap at a finite Fermi angle which depends on the tem-
perature. This particular angle marks the transition between
the Fermi arc and the pseudogap section. At T=0, it is about
25 degrees and moves towards the antinodal point for higher
temperatures. From Fig. 7, one may also deduce that the
length of the Fermi arc approximately increases linearly with
T. Also this feature is consistent with ARPES experiments.9

To discuss the influence of � on the temperature depen-
dence, in Fig. 8 the symmetrized spectral function IG�k ,��

is shown as function of � for two different temperatures T
=0 �black� and T=0.08t �red� and for five different hole con-
centrations between �=0.04 �bottom� and �=0.075 �top�.
The k vector is fixed to the antinodal point on the FS. The
curves for T=0 �black� show a decrease in the pseudogap
with increasing hole concentration until it vanishes at �
�0.075. For the higher temperature T=0.08t �red�, the
pseudogap vanishes already at a lower hole concentration of
��0.06. This verifies the experimentally known decrease in
the pseudogap temperature T* with increasing hole concen-
tration.

The doping and temperature behavior of IG�k ,�� can be
understood on the basis of the former result �Eq. �76�� for the
spectral function. First, in Fig. 9, the parameter ũk is shown
as a function of � which shows a strong increase with the
hole concentration. According to the first line in Eq. �76�, ũk
agrees with the amplitude of the coherent excitation. There-
fore, in Fig. 6 for instance, the weight of the coherent exci-
tation ��ũk�2 is negligibly small for the smallest hole con-
centration �=0.04, and the spectrum is dominated by the
incoherent part of Eq. �76�. In contrast, for sufficiently large
�, a coherent excitation at �=0 is expected, when k is fixed
to the Fermi surface. This behavior is for instance realized in
Fig. 4. Note that an additional broadening of the coherent
excitation should be included, which follows from the scat-
tering of the charge carriers at additional phonons or impu-
rities. In Fig. 8, this broadening was assumed to be T inde-
pendent and was set equal to 0.1t. Therefore, the following
doping behavior can be deduced from Fig. 8: For small hole
concentrations ����0.07�, the spectrum at T=0 is domi-
nated by the incoherent excitations with a pronounced
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pseudogap around the antinodal point. For intermediate hole
doping ���0.07�, the spectrum is a superposition of a co-
herent and of incoherent excitations. Both parts are of the
same order of magnitude for an intermediate doping. The
incoherent part has still a pseudogap which is partly compen-
sated by the broadening of the coherent excitation. For larger
doping ��0.07, the spectrum mainly consists of a coherent
excitation around �=0. With respect to temperature, the co-
herent excitation is almost unaffected by T, whereas the
pseudogap is filled up due to the temperature-dependent shift
of the Fermi surface, as will be explained below.

To understand the T behavior of the spectral function,
keep in mind that ũk and therefore the weight of the coherent
excitation in IG�k ,�� is almost independent of T. Moreover,
the total spectral weight, to which coherent and incoherent
excitations contribute, is T independent. This follows from
sum rule �72� since the total electron number is fixed. Thus,
except of minor changes, the overall temperature dependence
of IG�k ,�� is expected to be weak. Instead, the main reason
for the T dependence can be traced back to a change in the
Fermi surface with temperature. Consider a k vector on the
Fermi surface at the antinodal point, kF= �� ,kF

y �, where the x
component is fixed to kF

x =�. By varying the temperature,
one finds that the magnitude of the y component kF

y increases
almost linearly with T. Due to this shift of the Fermi energy
with T, also the positions of the incoherent excitations at �
=0 are shifted. In this way, one understands that the
pseudogap is less pronounced for higher temperatures, when
kF

x is fixed to kF
x =�. A similar behavior of the pseudogap was

found before in Fig. 5. There, the spectral function is shown
for fixed kx=� and different values of ky, when the tempera-
ture is fixed. Also in this case, the pseudogap is suppressed
for larger values of ky. Finally, note that kF

y also strongly
depends on the nearest-neighbor hopping t�. For small t�, the
pseudogap is more pronounced than for larger values of t�.
This can be seen by comparing the spectrum in Fig. 2 �with
t�=0.1t� with that of Fig. 6, where t�=0.4t.

VI. RENORMALIZATION APPROACH FOR THE
SUPERCONDUCTING PHASE

A. Renormalization equations

In the preceding sections, we have investigated the
pseudogap phase in the cuprates on the basis of the t-J
model. We now adopt the same model also for the supercon-
ducting phase. As before, we restrict ourselves to moderate
hole concentrations away from half-filling outside the anti-
ferromagnetic phase. In Fourier notation, the t-J model �1�
reads

H = �
k,�


kĉk�
† ĉk� + �

k
��k,
ĉk↑

† ĉk↓
† + �k,


* ĉk↓ĉk↑�

+ �
q

JqSqS−q. �82�

Here, 
k measures the one-particle energy from the Fermi
energy, i.e., 
k=−�i��j�tije

ik�Ri−Rj�−�. Note that in Eq. �82�,
we have introduced an infinitesimal field �k,
→0 which
breaks the gauge symmetry in the superconducting phase.

As before, we can decompose the Hamiltonian into an
unperturbed part H0 and into a perturbation H1,

H0 = �
k�


kĉk�
† ĉk� + �

k
��k,
ĉk↑

† ĉk↓
† + �k,


* ĉk↓ĉk↑�

+ �
q

JqA0�q� ,

H1 = �
q

Jq�A1�q� + A1
†�q�� . �83�

Decomposition �83� is an extension of the former decompo-
sition for the pseudogap phase to the superconducting phase.
It is based on a splitting of the exchange into two parts. The
first one, containing A0, commutes with Ht and should,
therefore, be a part of the unperturbed Hamiltonian H0. In
contrast, the two operators A1 and A1

† do not commute with
Ht and belong to H1. The operators A��q� were defined
before in Eqs. �29� and �30�.

The derivation of the renormalization equations for the
parameters of the Hamiltonian runs parallel to that for the
pseudogap phase. The aim of the projector-based renormal-
ization method �PRM� is to eliminate all transitions due to
H1 between the eigenstates of H0 with nonzero transition
energies. Let us again assume that all excitations with ener-
gies larger than a given cutoff � have already been elimi-
nated. Then, the ansatz for the renormalized Hamiltonian H�

should have the following form:

H� = H0,� + H1,� �84�

with

H0,� = Ht,� + �
q

Jq,�A0,��q�

− �
k

��k,�ĉk,↑
† ĉ−k,↓

† + �k,�
* ĉ−k,↓ĉk,↑� + E�,
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FIG. 9. The renormalized amplitude ũk of the coherent excita-
tion in Eq. �76� is shown as a function of the hole concentration �.
The k vector is fixed to �0,��.
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H1,� = �
q

Jq,���� − �2�̂q,����A1,��q� + A1,�
† �q�� . �85�

Ht,�=�k�
k,�ĉk�
† ĉk� is the renormalized hopping term and

depends on �. The other parameters �k,�, �̂q,�, and Jq,� in
Eq. �85� are also � dependent. However, the � dependence of
Jq,� can be suppressed according to Sec. IV. The �-dependent
operators A�,��q���=0, �1� are defined by Eqs. �29�, where

Ṡq and �̂q are replaced by Ṡq,� and �̂q,�. The latter quantities
were given in Eq. �36�.

In order to derive renormalization equations for the pa-
rameters of H�, we eliminate all excitations within an addi-
tional energy shell between � and a reduced cutoff �−��.
This is done by applying the unitary transformation to H�

according to Eq. �12�. In the following, we shall restrict our-
selves to a weak coupling theory. Therefore, all contributions
to the unitary transformation from the symmetry-breaking
fields can be neglected. Thus, the generator X�,�� is the same
as in the pseudogap phase. In lowest-order perturbation
theory in Jq, X�,�� was given by Eq. �38�. The explicit evalu-
ation of the unitary transformation �Eq. �12�� follows that of
the pseudogap phase. In perturbation theory to second order
in Jq, H�−�� reads H�−��=H�−��

�0� +H�−��
�1� +H�−��

�2� +¯,
where all orders look the same as in Eq. �40�, except that
now in H�−��

�0� the new symmetry breaking terms appear. Let
us at first investigate the effect of the second order term
H�−��

�2� . As before, the commutator expressions have to be
reduced in a further factorization approximation to operator
terms appearing in H�. Thereby, also a reduction to operators
ĉk↑

† ĉ−k↓
† and ĉ−k↓ĉk↑ has to be included. The final result has to

be compared with the formal expression for H�−��, which
corresponds to the expression �Eq. �84�� for H�, when � is
replaced by �−��. According to Appendix D, the following
second-order renormalization to the order parameter �k,� is
found:

�k,�−�� − �k,�

= −
1

16N
�
q

Jq
2

�̂q,�
4 �q��,����
k,� − 
k+q,��2�ĉ−�k+q�↓ĉk+q↑�

�
1

N
�
k�

�
k�+q,� + 
k�−q,� − 2
k�,��nk��
�NL�, �86�

whereas the renormalization for 
k,� is the same as in the
pseudogap phase. nk,�

�NL� was already defined in Eq. �42� and is
the nonlocal part of the one-particle occupation number per
spin direction. The expectation values in Eq. �86� have to be
calculated separately.

Up to now, only the renormalization contribution from the
second-order term H�−��

�2� of H�−�� was evaluated. With

k,�−�� and �k,�−��, we obtain for H�−��

H�−�� = Ht,�−�� − �
k

��k,�−��ĉk,↑
† ĉ−k,↓

† + �k,�−��
* ĉ−k,↓ĉk,↑�

+ H�−��
�1� + E�−��, �87�

where the first-order term H�−��
�1� has still to be evaluated.

This can again be done along the procedure for the
pseudogap phase. The final result for the renormalized

Hamiltonian H�−�� reads H�−��=H0,�−��+H1,�−��, with

H0,�−�� = Ht,�−�� − �
k

��k,�−��ĉk,↑
† ĉ−k,↓

† + �k,�−��
* ĉ−k,↓ĉk,↑�

+ E�−�� + �
q

JqA0,�−���q� ,

H1,�−�� = �
q

Jq��� − �� − �2�̂q,�−����

��A1,�−���q� + A1,�−��
† �q�� . �88�

The renormalized Hamiltonian H�−�� has the same operator
structure as H�. Therefore, we can formulate the same renor-
malization procedure as before: We start from the original t-J
model in the presence of a small gauge symmetry-breaking
field. The energy cutoff of the original model is denoted by
�=
. Starting from a guess for the unknown expectation
values, which enter the renormalization equations �k,� and

k,�, we proceed by eliminating all excitations in steps ��
from �=
 down to �=0. Thereby, the parameters of the
Hamiltonian change in steps according to the renormaliza-
tion equations for �k,� and 
k,�. In this way, we obtain a final
model at �=0, in which the perturbation H1,� is completely
integrated out. It reads

H�=0 = �
k�


k,�=0ĉk�
† ĉk� − �

k
��k,�=0ĉk,↑

† ĉ−k,↓
†

+ �k,�=0
* ĉ−k,↓ĉk,↑� + �

q
JqA0,�=0�q� + E�=0. �89�

Unfortunately, due to the presence of the A0 term, result �89�
does not yet allow us to recalculate the expectation values
since the eigenvalue problem of H�=0 can not be solved.
Therefore, a further approximation is necessary. It consists of
a factorization of the second term, defined in Eq. �59�. Ac-
cording to Appendix D, we end up with a modified Hamil-

tonian which will be denoted by H̃�1�,

H̃�1� = �
k�


̃k
�1�ĉk�

† ĉk� − �
k

��̃k
�1�ĉk,↑

† ĉ−k,↓
† + �̃k

�1�*ĉ−k,↓ĉk,↑�

+ �
q

Jq

2
SqS−q + Ẽ�1�. �90�

Here, not only the electron energy 
k,�=0 but also the order
parameter �k,�=0 is modified according to


̃k
�1� = 
k,�=0 −

1

N
�
q

3Jq

4�̂q,�=0
2 �
k,�=0 − 
k+q,�=0�2nk+q,�

�NL� ,

�̃k
�1� = �k,�=0 −

1

N
�
q

3Jq

4�̂q,�=0
2 �
k,�=0 − 
k+q,�=0�2

��ĉ−�k+q�↓ĉk+q↑� . �91�

Note that the operator structure of H̃�1� agrees with that of
the original t-J model of Eq. �82� in the presence of the
symmetry breaking field. Since the strength of the exchange
coupling in Eq. �90� is decreased by a factor of 1 /2, we can
start the whole renormalization procedure again. We consider

MICROSCOPIC APPROACH TO HIGH-TEMPERATURE… PHYSICAL REVIEW B 80, 014511 �2009�

014511-15



modified t-J model �90� as our new initial Hamiltonian �at
�=
� which has to be renormalized. The initial values of the

new Hamiltonian H̃�1� at cutoff �=
 are 
̃k
�1�, �̃k

�1�, and Jq /2.
After the new renormalization cycle, the exchange coupling

of the renormalized Hamiltonian H̃�2� is again decreased by a
factor of 1 /2, until, after a sufficiently large number of renor-
malization cycles �n→��, the exchange completely disap-
pears. Thus, we finally arrive at a free model

H̃ = �
k�


̃kĉk�
† ĉk� − �

k
��̃kĉk,↑

† ĉ−k,↓
† + �̃k

*ĉ−k,↓ĉk,↑� + Ẽ ,

�92�

with the new notation, H̃=H̃�n→��, 
̃k= 
̃k
�n→��, �̃k= �̃k

�n→��,

and Ẽ= Ẽ�n→��. The Hamiltonian H̃ allows us to recalculate
the unknown expectation values. With these values, the
whole renormalization procedure can be started again, until,
after a sufficiently large number of such overall cycles, the
expectation values converge. Then, the renormalization
equations have been solved self-consistently. However, the
fully renormalized Hamiltonian �Eq. �92�� is actually not a
free model. Instead, it is still subject to strong electronic
correlations which are built in by the presence of the Hub-
bard operators.

B. Evaluation of expectation values

The expectation values in Eqs. �86� and �91� are formed
with the full Hamiltonian of Eq. �82�. To evaluate an expec-
tation value �A�, we have to apply the unitary transformation
also on the operator variable A,

�A� =
Tr�Ae−�H�

Tre−�H = �A����H�
= �Ã�H̃, �93�

where we have defined as before A���=eX�Ae−X� and Ã
=A��→0�. Thus, additional renormalization equations for
A��� have to be derived.

1. ARPES spectral functions

According to Eqs. �57� and �68� the spectral function from
angle-resolved photoemission �ARPES� can be evaluated
from

A�k,�� =
1

1 + e��IG�k,�� . �94�

Using relation �93�, the dissipative part of the anticommuta-
tor Green’s function, IG�k ,��, can be expressed by

IG�k,�� = ��ĉk�
�n→��†�� = 0�,��L̃ + ��ĉk�

�n→���� = 0��+�H̃,

�95�

where the Liouville operator L̃ is related to H̃. Also, the

expectation value has to be evaluated with H̃. The fully
renormalized annihilation operator ĉk�

�n→����=0� can be taken
over from Eq. �67�,

ĉk�
�n→���� = 0� = ũkĉk� +

1

2N
�
qk�

ṽk,q
Jq

4�̃q
2 �

���

��� �� · �� ���

��
̃k� − 
̃k�+q�ĉk�+q�
† ĉk��ĉk+q�, �96�

where ũk=uk,�=0
�n→��, ṽk,q=vk,q,�=0

�n→�� , and 
̃k=
k,�=0
�n→��.

In order to evaluate the expectation value in Eq. �95�, we
introduce new approximate quasiparticle operators �Appen-
dix E�,

�k
† = Ukĉk,↑

† − Vkĉ−k,↓,

�k
† = Ukĉ−k,↓

† + Vkĉk,↑, �97�

which fulfill the following relations: L̃�k
† =Ek�k

† and L̃�k
†

=Ek�k
†, where Ek=	
̃k

2 +D2�̃k
2. Inserting Eq. �96� into Eq.

�95� and replacing all ĉk�
�†� operators by the quasiparticle op-

erators �k
�†� and �k

�†�, the � functions can be evaluated. We
restrict ourselves to the leading order in the superconducting
order parameter. The resulting expression for IG�k ,�� reads

IG�k,�� =
Dũk

2

2
�
1 +


̃k

Ek
���� − Ek� + 
1 −


̃k

Ek
���� + Ek��

+
3D

2N2 �
qq�
�
 Jqṽk,q

4�̂q
2 �2

�
k+q� − 
k+q+q��
2

� 
ñk+q+q�m̃k+q� + ñk+q�D + ñk+q� − ñk+q+q���

−
1

2

Jq

4�̂q
2

Jq�

4�̂q�
2 ṽk,qṽk,q�

��
k+q� − 
k+q+q���
k+q − 
k+q+q��

� 
�ñk+q� − m̃k+q�ñk+q+q� − ñk+q��ñk+q + D���
� �
� + sign�
̃k+q+q��Ek+q+q�

− sign�
̃k+q��Ek+q� − sign�
̃k+q�Ek+q� , �98�

where ñk and m̃k are defined by ñk= �ĉk�
† ĉk��H̃ and m̃k

= �ĉk�ĉk�
† �H̃. For ñk and m̃k, we use again the Gutzwiller

approximation,18

ñk = �D − q� + qf�
̃k� ,

m̃k = q�1 − f�
̃k�� with q =
1 − n

1 − n/2
,

where f�
̃k� is the Fermi function.

2. Pair correlation function

In order to evaluate the superconducting order parameter

�̃k, we have to know the superconducting pairing function
�ĉ−k↓ĉk↑�. Here, the expectation value is defined with the full
Hamiltonian for the superconducting phase. We first have to
transform the pairing function, according to Eq. �93�,
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�ĉ−k↓ĉk↑� = �ĉ−k↓
�n→���� → 0�ĉk↑

�n→���� → 0��H̃, �99�

where the expectation value is formed with the Hamiltonian

H̃, given by Eq. �92�. We can immediately take over our
previous result �Eq. �96�� for ĉk,�

�n→����→0�. For the full
renormalization, we obtain

�ĉ−k↓ĉk↑� = ũk
2�ĉ−k↓ĉk↑�H̃ +

3

2N2 �
qk�

ṽk,q
2 
 Jq

4�̂q
2�2

��
k� − 
k�+q�2m̃k�+qñk��ĉ−�k+q�↓ĉ�k+q�↑�H̃.

�100�

Contributions from third order in the superconducting order
parameter have been neglected. The expectation values on
the right-hand side are formed with the fully renormalized

Hamiltonian H̃ �Eq. �92��. Using again the approximate

Bogoliubov transformation of Appendix E, we find

�ĉ−k↓ĉk↑�H̃ =
D2�̃k

2Ek

1 −

2

1 + e�Ek
� . �101�

VII. NUMERICAL EVALUATION FOR THE
SUPERCONDUCTING STATE

Superconducting solutions have been obtained by evalu-
ating self-consistently the full PRM renormalization scheme
for a sufficiently large number of renormalization cycles. We
have taken the same parameters as for the normal state in
Sec. V B, t�=0.4t, J=0.2t.

A. Order parameter

1. Zero-temperature results

In Fig. 10, the superconducting gap function �̃k is plotted
in k space for optimal doping, �=0.08. In agreement with
experiment, the solution shows d-wave symmetry with nodal
lines directed along the diagonals of the Brillouin zone from
�−� ,−�� to �� ,�� and from �� ,−�� to �−� ,��. No
s-wave-like solutions were found.

In Fig. 11, both the superconduction gap function �̃k �left
panel� and the pair correlation function �ĉ−k↓ĉk↑� �right
panel� are shown as a two-dimensional �2D� plot for the
same parameter values as in Fig. 10. Again, in both func-
tions, the nodal lines are clearly seen. Moreover, the absolute
value of the pair correlation ��ĉ−k↓ĉk↑�� has a pronounced
maximum along the Fermi surface �FS�. This behavior can
easily be understood from Eq. �101�. For k values close to

the FS, k�kF, where 
k�O��̃k�, the quantity ��ĉ−k↓ĉk↑�� is
of order O�1�. In contrast, for k vectors away from the FS

�with 
k�O��̃k��, the pair correlation function is of order

O�� / t�. Note that the gap function ��̃k� has only a weak
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FIG. 10. �Color online� The superconducting gap function �̃k
versus k, as obtained from Eq. �108� for a square lattice with N
=40�40 sites. The parameters are �=0.08, t�=0.4t, and T=0. Note
that the gap function shows d-wave symmetry.
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parameters as in Fig. 10 plotted as a 2D map.
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minimum at the Fermi surface. Additional weak maxima can
be detected for the following k vectors: ��� , �0.55��,
��0.55� , ���, ��0.5� ,0�, and �0, �0.5��.

Figure 12 shows the superconducting gap function �̃k on
the Fermi surface as a function of the Fermi surface angle �
for three doping values, �=0.05 �underdoped case, blue
line�, �=0.08 �optimally doped, black line�, and �=0.12
�overdoped, red line�. The angle � was already defined in the

inset of Fig. 3. In all three cases, �̃k shows a characteristic
overall increase from the nodal ��=0� to the antinodal point.
Note, however, that the maximum value is already reached at
a finite angle of about 27°, which is followed by a weak

decrease in �̃k.
According to Fig. 10, the gap function shows a pro-

nounced k dependence in the whole Brillouin zone. By Fou-

rier transforming �̃k to the local space,

�̃ij =
1

N
�
i,j

�̃k
���eik�Ri−Rj�, �102�

one finds the spatial dependence shown in Fig. 13. The figure
again reveals the d-wave character of the superconducting

order parameter. Note that the strong k dependence of �̃k
maps on a short-range behavior in local space. As is clearly
seen, the local order parameter decays in space within a few
lattice constants. This feature is consistent with the experi-
mentally found superconducting coherence length in the cu-
prates of the order of a few lattice constants. The order pa-
rameter changes its sign by proceeding along the x or y axis.
This can be seen for various hole fillings in Fig. 14, where

�̃ij is shown as a function of Rij
x �for fixed Rij

y =0�. Here Rij
x

and Rij
y are the components of the difference vector Rij =Ri

−R j between lattice sites Ri and R j. The alternating sign of

�̃ij seems to be reminiscent of the sign behavior of antifer-
romagnetic correlations. However, the sign change is a prop-

erty of the superconducting state and not of antiferromag-
netic correlations.

2. Finite-temperature results

In Fig. 15, the local order parameter �̃ij is plotted as a
function of T for different values of the distance between
local sites, �= �Rij�. The curves are obtained from Fourier
back transforming Eq. �102� together with the temperature-
dependent expression for �ĉ−k↓ĉk↑� from Sec. IV B. All
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FIG. 12. �Color online� Superconducting gap function �̃k �in
units of 2t� as a function of the Fermi surface angle � which was
defined in the inset of Fig. 3 for three doping values, �=0.05 �un-
derdoped case, blue line�, �=0.08 �optimal doping, black line�, and
�=0.12 �overdoped case, red line�.
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curves vanish at the same temperature T /2t�0.026, which
defines the critical temperature Tc. Note that the temperature

dependence of �̃ij and thus of the gap function �̃k resembles
that of the order parameter in usual BCS superconductors.21

This property can be traced back to the diagonalization ap-
proach on the basis of a Bogoliubov transformation in Ap-
pendix E, which is applied to the renormalized Hamiltonian

H̃ in the superconducting state. Also the pair correlation
function �ĉ−k↓ĉk↑� is evaluated in this way which results in a
temperature dependence as in BCS superconductors as well.

In Fig. 16, the critical temperature Tc is given as a func-
tion of the hole doping �. The parameter values are again
t�=0.4t and J=0.2t. Note that for small hole doping �
�0.03, no superconducting solutions are found. Also this
result of the PRM is in good agreement with experiments. In
the underdoped region for ��0.03, the critical temperature
Tc first increases substantially until it arrives a maximum
value at about ��0.08. Above the optimal doping concen-

tration of �=0.08, the critical temperature decreases again
�overdoped region�. Within the parameter range, given in the
figure, the Tc behavior agrees very well with experiment. For
still larger values of ����0.15�, our PRM result for Tc re-
mains finite. This feature is in disagreement with experi-
ments, where the superconducting phase vanishes above a
critical hole concentration. However, this defect of the
present approach is by no means surprising. As was dis-
cussed in Secs. IV and VI, we have argued from the begin-
ning that the present approach is not applicable for the case
of large hole doping. Nevertheless, Fig. 16 demonstrates that
we are able to explain the experimental findings at least in
the underdoped and in the optimal doping regime. For the
present parameter values, the maximum of Tc at optimal dop-
ing is approximately given by Tc�0.06t. Assuming a bare
bandwidth of 8t�104 K, this Tc value corresponds to a criti-
cal temperature of order 50−100 K, which is in the correct
order of magnitude.

3. Discussion

Next, we want to discuss the origin of the superconduct-
ing pairing mechanism. Let us start with the superconducting

order parameter �̃k
�1� after the first renormalization step. Ac-

cording to Eq. �91�, we have

�̃k
�n=1� = �k,�=0 −

1

N
�
q

3Jq

4�̂q,�=0
2 �
k,�=0 − 
k+q,�=0�2

��ĉ−�k+q�↓ĉk+q↑� . �103�

The first term on the right-hand side results from second-
order renormalization contributions according to Eq. �86�.
The numerical evaluation of Eq. �103� shows that it is small
compared to the second term. According to Sec. VI, the latter

one results from the factorization of the contribution �ṠqṠ−q

in the renormalized Hamiltonian H�=0=�q�Jq� / �2�̂q
2�ṠqṠ−q

+¯ after the first renormalization cycle. Therefore, we can
conclude from �D2� that the dominant part of the micro-
scopic pairing interaction is given by

H�SC� =
1

N
�
qk

Jq

4�̂q
2 �
k − 
k−q�2�ĉk↑

† ĉ−k↓
† ĉ−�k−q�↓ĉk−q↑

+ 2ĉk↑
† ĉ−k↓

† ĉk−q↓ĉ−�k−q�↑� . �104�

Here, spin-singlet pairing was assumed. Expression �104� is
our central result for the superconducting pairing mechanism
in the cuprates. In contrast to usual BCS superconductors,
where the pairing interaction between Cooper electrons is
mediated by phonons, the present result can not be inter-
preted as an effective interaction of second order in some
electron-bath coupling. Note that Eq. �104� results from the
part of the exchange HJ which commutes with Ht. An im-
portant feature of the pairing interaction is the oscillation
frequency �̂q

2 in the denominator of Eq. �104�,
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FIG. 16. Critical temperature Tc as a function of the hole doping
� for t�=0.4t and J=0.2t. No superconducting solution is found for
��0.03. This result explains the vanishing of the superconducting
phase in the cuprates at very low doping.
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�̂q
2 = 2P0�tq=0

2 − tq
2� = �̂−q

2 � 0, tq
2 = �

l��i�
til
2 cos q�Rl − Ri� ,

�105�

which enhances the pairing mechanism for small hole doping
since P0��. Therefore, the pairing interaction is mediated
by oscillating hopping processes between nearest neighbors.
This was discussed in detail in Sec. IV A. First, an electron
hops to a neighboring site which is empty. In the second step,
it hops back to the first site since this site was certainly
empty after the first hop. Thereby, the presence of short-
range antiferromagnetic correlations in the unperturbed
Hamiltonian H0 is crucial since it prevents the hopping to
more distant sites.

In order to derive an approximate gap equation, let us
again start from Eq. �103�. When we restrict ourselves to a
weak coupling theory, the � dependence of 
k,� and �̂q,� can
be neglected,

�̃k
�1� = −

1

N
�
q

3Jq

4�̂q
2 �
k − 
k+q�2�ĉ−�k+q�↓ĉk+q↑� , �106�

where the first term from Eq. �103� was already omitted. For
a purely qualitative discussion of the gap parameter, let us
abandon all higher order renormalization effects, which
would be included in the full renormalization scheme of Sec.
VI. Inserting the former expression �Eq. �100�� for �ĉ−k↓ĉk↑�
into Eq. �106�, we find

�̃k
�1� = −

1

N
�
q

3Jq

4�̂q
2 �
k − 
k+q�2ũk+q

2 D2 1 − 2f�Ek+q�

2	
k+q
2 + D2�̃k+q

2
�̃k+q,

�107�

where Ek is again given by Ek=	
k
2 +D2�̃k

2, and f�Ek� is the
Fermi function f�Ek�=1 / �1+e�Ek�. Moreover, by replacing

on the left-hand side also �̃k
�1� by �̃k, we arrive at the follow-

ing approximate gap equation:

�̃k � −
1

N
D2�

q

3Jq

4�̂q
2 �
k − 
k+q�2ũk+q

2 1 − 2f�Ek+q�

2	
k+q
2 + D2�̃k+q

2
�̃k+q.

�108�

Note that the main features of our numerical results for the
full renormalization scheme can already be detected from
this equation. Due to the doping dependence of ũk, shown in
Fig. 9, superconductivity sets in at the same small � value, at
which ũk becomes nonzero. With increasing hole doping, ũk
increases, which also leads to a strengthening of the coherent
excitation in IG�k ,��. Moreover, superconductivity is fa-
vored for low doping due to the factor �̂q

2 �� in the denomi-
nator of Eq. �108�. Both features together, i.e., the increase in
ũk with � and �̂q

2 �� lead to a maximum of Tc at a finite
doping value which is seen in Fig. 16. The property �̂q

2 ��
also explains the decrease in Tc in the overdoped region
since renormalization processes become weaker for larger �.

The preference of the PRM to find solutions with d-wave
symmetry for the gap parameter can also be understood from
gap equation �108�. For an explanation, let us start by divid-
ing the sum over q in Eq. �108� into two parts with �
k+q�

� ��̃k+q� and �
k+q�� ��̃k+q�. Omitting the second sum, one
finds

�̃k � −
1

N
�

q,�
k+q����̃k+q�

3Jq

4�̂q
2 �
k − 
k+q�2

�ũk+q
2 D2 1 − 2f�Ek+q�

2	
k+q
2 + �̃k+q

2
�̃k+q. �109�

For most values of k, the neglected sum is smaller by a
factor of order � / t. An exception are k values close to the
Fermi surface k�kF �with �
k��O��k��, which will be ex-
cluded in the following discussion. Here, the sum with

�
k+q�� ��̃k+q� would be larger by a factor of order t /�. With
respect to Eq. �109�, those terms of the q sum are most

important, which have energies �
k+q� not exceeding ��̃k+q�.
For k values on the diagonal, kx=ky, of the Brillouin zone, it
can be seen that q values with qy �qx�� lead to small en-
ergies 
k+q�0 and thus to the dominant contributions in Eq.
�109�. Here, the dispersion relation 
k=−2t�cos kxa
+cos kya� was used. However, the prefactor Jq vanishes in
this case. This explains the nodal line kx=ky and similarly
kx=−ky of the gap parameter in Fig. 11. However note that
the exchange constant Jq changes its sign as a function of q.
From this behavior, one can conclude that d-wave symmetry
for the order parameter is more favorable than s-wave sym-
metry.

B. ARPES spectral functions

Finally, let us discuss the ARPES spectral function in the
superconducting phase. This quantity is obtained from the
dissipative part of the anticommutator Green’s function �Eq.
�57��.

In Figs. 17–19, our results for the superconducting phase
are given which are obtained from the numerical evaluation
of Eq. �98�. First, in Fig. 17, we have chosen as parameters:
�=0.08 �optimal doping�, T=0, t�=0.4t, and J=0.2t. Two
cuts with fixed kx and varying ky are shown. Thereby the FS
is crossed. In panel �a�, where kx=�, the spectra belong to k
values in the antinodal region, whereas in �b� kx=5� /8.

-0.1 0 0.1
ω / 2t

Im
G

k,
ω

(
)

(a)

-0.1 0 0.1 0.2
ω / 2t

(b)

(b)(a)

FIG. 17. �Color online� Spectral functions IG�k ,�� in the su-
perconducting phase at optimal doping, �=0.08 for two fixed kx

values: �a� kx=� �antinodal region� and �b� kx=5� /8 �in between
antinodal and nodal region�. By varying ky, the Fermi surface is
crossed. The other parameters are t�=0.4t, J=0.2t, and T=0.
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Here, a k region is probed in between the nodal and the
antinodal point. The spectra in both panels display peaklike
structures in a small energy range around �=0. Note that all
structures are caused alone by the coherent part of IG�k ,��
�first line in Eq. �98��, which consists of two peaks at the
positions �= �Ek. For k vectors, far away from the FS �top
and bottom plots in Figs. 17�a� and 17�b��, a dominating
peak at �� 
̃k is found, which arises from the excitations at
�Ek, depending on the sign of 
̃k. By approaching the FS, a
secondary peak arises at ��−
̃k. An expansion of the pref-
actors in Eq. �98� shows that in each case the secondary peak

has a smaller weight of order ��̃k / 
̃k�2. Only for k values on
the FS �
̃k=0�, the two coherent peaks have equal weight.
They are separated by an energy distance, which is given by

the gap parameter �2D�̃k�. Note that the gap size is almost
the same for the two cases of Fig. 17. A comparison of both
panels of Fig. 17 also shows that the secondary peak is more
pronounced in the antinodal region than in between the an-
tinodal and nodal regions. Furthermore, the overall disper-
sion of 
̃k of the primary peak is weaker in the antinodal

region than for the case of intermediate kx values. With re-
spect to the incoherent contributions to IG�k ,��, note that
for optimal doping the overall weight of the coherent and of
the incoherent excitations are approximately the same. How-
ever, the incoherent part of the spectrum is spread over a
much larger frequency range. Therefore, in a small � range,
close to the Fermi level, the coherent excitations are domi-
nant.

In Fig. 18, the spectral function is plotted in the nodal
region for fixed kx=� /2 and different values of ky. Thereby,
again the FS is crossed. Note that neither a secondary peak
nor a superconducting gap is found in the nodal region. Also,
the coherent peak moves almost unchanged through the FS,
when ky is varied.

Finally, Fig. 19 shows the results for the symmetrized
spectral functions IG�k ,�� for two different temperatures
�a� T=0 �superconducting phase� and �b� T=0.05t
�pseudogap phase�. The k values proceed on the FS between
the nodal �top� and the antinodal �bottom� point. The hole
concentration is �=0.05 �underdoped regime� which leads to
a critical temperature Tc=0.03t. In the spectra at temperature
T=0, one recognizes the opening of a superconducting gap
for all k vectors except at the nodal point. The gap size as a
function of the Fermi surface angle � is given by the blue
line in Fig. 12. Similar as before, the peaklike structure arises
from the coherent excitations in a small � range around �
=0. For the higher temperature, T=0.05t �pseudogap phase�,
the system is in the normal state. On a substantial part of the
Fermi surface, the spectra now show the typical large spec-
tral weight around �=0, indicating a Fermi arc of gapless
excitations. The Fermi arc extents over a finite k range. In
contrast to the superconducting case, the spectrum is now
dominated by the incoherent excitations. In the antinodal
region, they form the pseudogap around �=0. Note that
the pseudogap in Fig. 19�b� is about ten times larger
than the superconducting gap at T=0 �for the present hole
doping �=0.05�. Note that for both temperatures, the spectra
are in good qualitative agreement with recent ARPES
measurements.9,11,12

Let us finally make one remark concerning the linewidth
of the coherent peaks. As was already mentioned in Sec. V,
from the experimental point of view, we would expect a
temperature-dependent broadening of the coherent peaks
which is caused by the coupling to other degrees of freedom.
Such a broadening was not incorporated in the present ap-
proach. Note, however, that a broadening of the spectra is
also produced by the incoherent excitations of IG�k ,��. In
order to include a temperature-dependent broadening of the
coherent excitations, we have added by hand a small line-
width in Fig. 19, which is taken of the order of kBT.

VIII. CONCLUSIONS

In this paper, we have given a microscopic approach to
high-temperature superconductivity at moderate hole doping.
Thereby, a recently developed projector-based renormaliza-
tion method �PRM� was applied to the t-J model in order to
investigate the pseudogap as well as the superconducting
phase. The pseudogap, which is found in ARPES experi-
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FIG. 18. �Color online� Spectral functions IG�k ,�� as in Fig.
17 for a fixed kx value, kx=� /2. By varying ky the Fermi surface is
crossed in the nodal region.
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FIG. 19. �Color online� Symmetrized spectral functions
IG�k ,�� for k values on the FS between the nodal �top� and anti-
nodal point �bottom� for two temperatures �a� in the superconduct-
ing phase at T=0, and �b� in the pseudogap phase at T=0.05t. The
critical temperature is Tc=0.03t �underdoped case �=0.05�. The
other parameters are the same as in Fig. 17.
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ments, can be traced back to incoherent excitations in the
one-particle Green’s function. It can neither be explained by
a competing order nor as a precursor of superconductivity.
Instead, the pseudogap phase is an intrinsic property of the
cuprates close to half-filling. Our result for the superconduct-
ing order parameter shows d-wave symmetry with a coher-
ence length of a few lattice constants which is in agreement
with experiments. In contrast to usual BCS superconductors,
where the pairing interaction between Cooper electrons is
mediated by phonons, the superconducting pairing interac-
tion in the cuprates can not be interpreted as an effective
interaction of second order in some electron-bath coupling.
Instead, the main contribution to the pairing results from the
part of the exchange interaction which commutes with the
hopping Hamiltonian Ht. The superconducting state natu-
rally arises from a typical oscillation behavior of the corre-
lated electrons between neighboring lattice sites due to the
presence of spin fluctuations. The theoretical results can ex-
plain the experimental findings in the underdoped as well as
in the optimal doping regime. The obtained value of Tc at
optimal doping has the correct order of magnitude.
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APPENDIX A: DERIVATION OF THE SPIN
SUSCEPTIBILITY �(q ,�)

The derivation of the spin susceptibility ��q ,�� in Eq.
�24� for the system, described by the Hamiltonian H0=Ht
+HJ

�0�, is based on the Mori-Zwanzig projection formalism.
This formalism allows to derive exact equations of motion
for an appropriately chosen set of relevant operator variables

A��,

d

dt
A��t� = i�

�

A��t���� − �
0

t

�
�

A��t − t������t��dt� + F��t� ,

�A1�

where the dynamics of the set A��t� should be governed by
H0, i.e., A��t�=ei/�H0tA�e−i/�H0t. The quantities i���, ����t�,
and F��t� are called frequency matrix, self-energy, and ran-
dom force

i��� = �
�

���
−1�A��Ȧ��, ����t� = �

�

���
−1�Ȧ��QeiQL0QtQȦ�� ,

F��t� = ieiQL0QtQL0A�. �A2�

Here, Ȧ� is the time derivative of A�, defined by Ȧ�= iL0A�,
and ���

−1 is the inverse of the susceptibility matrix ���

= �A� �A��. In Eqs. �A2�, we have also introduced a scalar
product between operator quantities A and B,

�A�B� = �
0

�

d��A†e−�L0B�0, �A3�

where the expectation value �¯ �0 is formed with H0 and L0
is the Liouville operator, which corresponds to H0. In ����t�

the quantity Q is a projection operator which projects on the
subspace of all operator variables which are “perpendicular”
to the set 
A��, i.e.,

Q = 1 − �
�

�A�����
−1 �A�� . �A4�

To use the general projection formalism to derive ��q ,��,
we have to choose an appropriate set of relevant operator

A��. In our case, this set is given by Sq and its time deriva-

tive Ṡq, i.e.,


A�� = 
Sq,Ṡq� . �A5�

From Eqs. �A1�, one easily derives the following two equa-
tions:

d

dt
Sq�t� = Ṡq�t� ,

d

dt
Ṡq�t� = − �q

2Sq�t� − �
0

t

dt�Ṡq�t − t���q�t�� + Fq�t� ,

�A6�

where the frequency and the self-energy in the second equa-
tion are given by

�q
2 =

�Ṡq�Ṡq�
�Sq�Sq�

, �q�t� =
1

�Ṡq�Ṡq�
�S̈q�QeiQL0QtQS̈q�

�A7�

and the random force is Fq�t�=eiQL0QtQS̈q. The projector Q
projects perpendicular to Sq and Ṡq. In deriving Eqs. �A6�,
we have also used �Sq

	 � Ṡq
��= i��Sq

	† ,Sq
���0=0 �for all 	 ,�

=x ,y ,z�, which follows from the exact relation �A �L0B�
= ��A† ,B��0. To find the dynamical susceptibility ��q ,��, we
multiply both equations �Eqs. �A6�� with the bra �Sq� and go
over to the Laplace transform. Using �Sq �Fq�=0, we obtain

��q,�� =
− �q

2

�2 − �q
2 − ��q���

��q� . �A8�

Here, ��q�= �Sq �Sq� is the static spin susceptibility and
�q��� is the Laplace transformed self-energy,

�q��� =
1

�Ṡq�Ṡq�

S̈q�Q

1

� − QL0Q − i�
QS̈q� . �A9�

To proceed, we have to evaluate the second time derivative

S̈q

S̈q = −
1

	N
�
i�l

til
2�eiqRl − eiqRi��S� lP0�i� − S� iP0�l��

−
1

2	N
�
��

�
i�j

�
j��i�l�

tiltlj�eiqRi − eiqRl�

� 
�� ���ĉj�
† D��l�ĉi� + ĉj,−�

† Sl
�ĉi��

+ �� ��
* �ĉi�

† D��l�ĉj� + ci�
† Sl

−�ĉm,−��� , �A10�

where only the dominant part of the hopping Hamiltonian Ht
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was taken into account. The first term on the right-hand side
of Eq. �A10� enters from a twofold hopping to a neighboring
site and back. By replacing the two projectors P0�i� and
P0�l� by their expectation values, we come back to the
former equation of motion �Eq. �22��. Therefore, we can con-
clude that the frequency term �q

2, defined in Eq. �A7�, agrees
with the former frequency term �̂q

2 from Eq. �22�,

�q
2 = �̂q

2 = 2P0�tq=0
2 − tq

2� � 0. �A11�

The second contribution in Eq. �A10� describes a twofold
hopping away from the starting site and agrees with the

quantity QS̈q in the self-energy,

QS̈q = −
1

2	N
�
��

�
i�j

�
j��i�l�

tiltlj�eiqRi − eiqRl�

� Q
�� ���ĉj�
† D��l�ĉi� + ĉj,−�

† Sl
�ĉi��

+ �� ��
* �ĉi�

† D��l�ĉj� + ci�
† Sl

−�ĉm,−��� . �A12�

In order to obtain a rough estimate for the self-energy �q���,
we neglect the spin flip operators in Eq. �A12� and replace
the local projectors D��i� and D��l� as before by their ex-
pectation value D. By introducing Fourier transformed quan-
tities, we find

QS̈q =
D

2	N
�
��

�� ����
k+q − 
k�2 − 2�tq=0
2 − tq

2��Qĉk+q,�
† ĉk�.

�A13�

The self-energy then reads

�q��� =
D2

�S�̇q�S�̇q�

1

4N
�
kk�

�
��

�
����

�� �� · ��
����
*

� ��
k+q − 
k�2 − 2�tq=0
2 − tq

2��

���
k�+q − 
k��
2 − 2�tq=0

2 − tq
2��

� 
ĉk+q,�
† ĉk��

1

� − QL0Q − i�
Qĉk�+q,��

† ĉk���� .

�A14�

In the final step, we factorize the two-particle correlation
function in Eq. �A14� in a product of one-particle Green’s
functions. A straightforward calculation leads for the imagi-
nary part of the self-energy to

I�q��� =
D2

�S�̇q�S�̇q�

3

2N
�
k

��
k+q − 
k�2

− 2�tq=0
2 − tq

2��2IMk�q,�� ,

IMk�q,�� =
1 − e−��

��

1

�
�

−�

�

d�̃
IGk

�0��� + �̃�
1 + e−���+�̃�

IGk+q
�0� ��̃�

1 + e��̃
.

�A15�

Here, IGk
�0���� is the imaginary part of the one-particle

Green’s function, formed with the Hamiltonian H0,

Gk
�0���� = i�

0

�

dt��ĉk,��t�, ĉk,�
† �+�0e−i��−i��t. �A16�

Finally, we have to evaluate the denominator �S�̇q �S�̇q� of
�q���. Proceeding in analogy to the evaluation of �q���, we
find

�Ṡq�Ṡq� =
3

2N
�
k

�
k+q − 
k�2�ĉk+q,�
† ĉk��ĉk+q,�

† ĉk�� �A17�

with

�ĉk+q,�
† ĉk��ĉk+q,�

† ĉk��

= �
−�

�

d�
1 − e−��

��

1

�2�
−�

�

d�̃
IGk

�0��� + �̃�
1 + e−���+�̃�

IGk+q
�0� ��̃�

1 + e��̃
.

APPENDIX B: FACTORIZATION OF Ṡq,�Ṡ−q,� FOR THE
PSEUDOGAP PHASE

The aim of this appendix is to simplify the operator prod-

uct Ṡq,�Ṡ−q,� in the expressions for H0,� and H1,� from Sec.
IV A,

H0,� = �
q

Jq

2

Sq · S−q +

1

�q,�
Ṡq,� · Ṡ−q,�� ,

H1,� = �
q

Jq

2

Sq · S−q −

1

�q,�
Ṡq,� · Ṡ−q,�� .

This will be done by use of a factorization approximation.
Using for the time derivative

Ṡq,� =
i

2	N
�
��

�� ���
i�j

tij,��eiqRi − eiqRj�ĉi�
† ĉj�

we first can rewrite Ṡq,�Ṡ−q,� as

Ṡq,�Ṡ−q,� =
1

4N
�
��

�
��

��� �� · �� ����
i�j

tij,��eiqRi − eiqRj�

� �
l�m

tlm,��e−iqRl − e−iqRm�ĉi�
† ĉj�ĉm�

† ĉl�. �B1�

Using a factorization approximation, the four-fermion opera-
tor on the right hand side can be reduced to operators ĉk�

† ĉk�

which will lead to a renormalization of 
k. Thereby, we have
to pay attention to the fact that the averaged spin operator
vanishes ��Si�=0� outside the antiferromagnetic regime.
Moreover, all local indices in the four-fermion term of Eq.
�B1� should be different from each other. This follows from
the former decomposition of the exchange interaction into
eigenmodes of Lt in Sec. IV A, where we have implicitly

assumed that the operators Ṡq,� and Ṡ−q,� do not overlap in
the local space. Otherwise, the decomposition would be
much more involved. However, it can be shown that these
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“interference” terms only make a minor impact on the re-
sults. For the factorization, we find

Ṡq,�Ṡ−q,� =
3

4N
�
i�j

tij,��eiqRi − eiqRj��
l�m

tlm,��e−iqRl − e−iqRm�

� ��
�

��ĉj�ĉm�
† �NL��ĉi�

† ĉl��NL + �
�

��ĉi�
† ĉl��NL�

��ĉj�ĉm��NL� , �B2�

where we have neglected an additional c-number quantity,
which enters in the factorization. The attached subscript in
�¯ �NL on the right-hand side indicates that the local sites of
the operators inside the brackets are different from each
other. Note that sums over spin indices in Eq. �B1� have
already been carried out. Fourier transforming Eq. �B2� leads
to

Ṡq,�Ṡ−q,� = −
3

2N
�
k�

�
k,� − 
k−q,��2��ĉk−q�
† ĉk−q��NL�

��ĉk�
† ĉk��NL, �B3�

where we have defined

�ĉk�
† ĉk��NL = ĉk�

† ĉk� −
1

N
�
k�

ĉk��
† ĉk��.

Using Eq. �B3� together with Eq. �51�, one is led to the
renormalization result �Eq. �53�� of 
̃k

�0� to first order in J.
In the following, let us simplify the notation and suppress

the index � in Ṡq,�, 
k,�, and also in �̂q,�. With this conven-
tion, we shall use factorization �B3� in order to derive renor-
malization �41� for 
k,� in second order in J. We start from
expression �40� for the renormalized Hamiltonian H�−��

�2� in
second order,

H�−��
�2� = �

q
Jq���� − �2�̂q,��� −

1

2
��X�,��,A1,��q�

+ A1,�
† �q��

+ �
q

Jq�X�,��,A0,�� ,

=�
q

Jq�q��,���
3

4
�X�,��,Sq · S−q�

+
1

4�̂q
2 �X�,��,Ṡq · Ṡ−q�� , �B4�

where in the first line we have already used �X�,�� ,Ht,��=
−�qJq�q�� ,����A1,��q�+A1,�

† �q��. Next, we have to evalu-

ate the commutators of X�,�� with Sq ·S−q and Ṡq · Ṡ−q. Using

�Ṡ−q
	 ,Sq

	�= i
4N�q��2
k−
k+q−
k−q�ĉk�

† ĉk�, �	=x ,y ,z�, and
Eq. �39�, we find

�X�,��,Sq · S−q� =
Jq

4�̂q
2 �q��,���
 1

N
�
k�

�2
k − 
k+q − 
k−q�

��ĉk�
† ĉk���Sq · S−q +

Jq

4�̂q
2 �q��,���

��Sq · S−q�
1

N
�
k�

�2
k − 
k+q − 
k−q�ĉk�
† ĉk�,

�X�,��,Ṡq · Ṡ−q� = −
Jq

4�̂q
2 �q��,���
 1

N
�
k�

�2
k − 
k+q − 
k−q�

��ĉk�
† ĉk���Ṡq · Ṡ−q −

Jq

4�̂q
2 �q��,���

��Ṡq · Ṡ−q�
1

N
�
k�

�2
k − 
k+q − 
k−q�ĉk�
† ĉk�.

�B5�

Note that in Eq. �B5� already a factorization approximation
was used. With relations �B4� and �B5�, we obtain

H�−��
�2� = 3�

q

 Jq

4�̂q
2�2

�q��,���
� 1

N
�
k�

�2
k − 
k+q − 
k−q�

��ĉk�
† ĉk���Sq · S−q + �Sq · S−q�

1

N
�
k�

�2
k − 
k+q

− 
k−q�ĉk�
† ĉk�� − �

q

 Jq

4�̂q
2�2

�q��,���

�
� 1

N
�
k�

�2
k − 
k+q − 
k−q��ĉk�
† ĉk���Ṡq · Ṡ−q

+ �Ṡq · Ṡ−q�
1

N
�
k�

�2
k − 
k+q − 
k−q�ĉk�
† ĉk�� . �B6�

In a final step, we factorize �Ṡq · Ṡ−q according to Eq. �B3�,

H�−��
�2� = 3�

q

 Jq

4�̂q
2�2

�q��,���
� 1

N
�
k�

�2
k − 
k+q − 
k−q�

��ĉk�
† ĉk���Sq · S−q + �Sq · S−q�

1

N
�
k�

�2
k − 
k+q

− 
k−q�ĉk�
† ĉk�� − �

q

 Jq

4�̂q
2�2

�q��,���

��Ṡq · Ṡ−q�
1

N
�
k�

�2
k − 
k+q − 
k−q�ĉk�
† ĉk�

+
3

2N
�
q�


 Jq

4�̂q
2�2

�q��,���

�� 1

N
�

k���

�2
k� − 
k�+q − 
k�−q��ĉk���
† ĉk�����

� �
k�

�
k − 
k−q�2��ĉk−q�
† ĉk−q��NL��ĉk�

† ĉk��NL. �B7�
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From Eq. �B7�, renormalization equation �41� for 
k,�−�� can
immediately be deduced.

APPENDIX C: RENORMALIZATION EQUATIONS FOR
FERMION OPERATORS

The aim of this appendix is to derive the renormalization
equation for the fermion operator ĉk����=eX�ĉk�e−X� in sec-
ond order in Jq. As before, we shall suppress the index �

everywhere in Ṡq,�, �̂q,�, and 
q,� in order to simplify the
notation. Let us start from an ansatz for ĉk���� after all ex-
citations with transition energies larger than � have been
integrated out. It reads

ĉk���� = uk,�ĉk� − i�
q

���2�̂q� − ��

�vk,q,�
Jq

4�̂q
2 �Sq · Ṡ−q + Ṡ−q · Sq,ck�� . �C1�

In Eq. �C1�, the parameters uk,� and vk,q,� account for the �
dependence. Note that the operator structure in Eq. �C1� cor-
responds to that of the first-order expansion for ĉk����
� ĉk�+ �X� , ĉk��. Here, X� has the same operator form as the
generator X�,�� in Eq. �38�. Due to construction, the q sum in
Eq. �C1� only runs over q values with excitation energies
�2�̂q� larger than �. This is assured by the � function in Eq.
�C1�. For simplicity, in the following we agree upon to in-
corporate the � function in vk,q,�. Thus, we can write

ĉk���� = uk,�ĉk� − i�
q

vk,q,�
Jq

4�̂q
2 
��Sq,ck�� · Ṡ−q

+ Ṡ−q · �Sq,ck��� + �Sq · �Ṡ−q,ck�� + �Ṡ−q,ck�� · Sq�� .

�C2�

For the additional renormalization from � to the reduced
cutoff �−��, we have

ĉk��� − ��� = eX�,��ĉk����e−X�,��

= uk,�eX�,��ĉk�e−X�,�� − i�
q

vk,q,�
Jq

4�̂q
2 eX�,��

��Sq · Ṡ−q + Ṡ−q · Sq,ck��e−X�,��, �C3�

where X�,�� is the generator from Eq. �38�,

X�,�� = − i�
q

Jq

4�̂q
�q��,����SqṠ−q + ṠqS−q� .

First, let us expand the term �uk,� in Eq. �C3�,

eX�,��ĉk�e−X�,�� = ĉk� + �X�,��, ĉk�� +
1

2
�X�,��,�X�,��, ĉk���

+ ¯ . �C4�

Here, we can combine the second term in Eq. �C3� with the
second part in Eq. �C2�,

ĉk��� − ��� = �uk,� + ¯ �ĉk� − i�
q

�vk,q,� + uk,��q��,���

+ ¯ �
Jq

4�̂q
2 �Sq · Ṡ−q + Ṡ−q · Sq,ck�� + ¯ ,

�C5�

where the dots ��¯� mean additional contributions from
higher-order commutators with X�,��. On the other hand,
ĉk���−��� should have the same form as ansatz �C1�, when
� is replaced by �−��,

ĉk��� − ��� = uk,�−��ĉk� − i�
q

vk,q,�−��

�
Jq

4�̂q
2 �Sq · Ṡ−q + Ṡ−q · Sq,ck�� . �C6�

The comparison of Eqs. �C6� and �C5� immediately leads to
renormalization equation �61� for vk,q,�,

vk,q,�−�� = vk,q,� + uk,��q��,��� , �C7�

where we have restricted ourselves to the lowest order con-
tributions in X�,��. Furthermore, we have exploited the very
weak � dependency of 
k,� and �̂q,�.

The renormalization equation for the second parameter
uk,� requires the evaluation of higher-order commutators in
Eq. �C3�. Alternatively, we can start from anticommutator
relation �3�

�ĉk�
† ���, ĉk�����+ =

1

N
�

i

eX�D��i�e−X� =
1

N
�

i

D��i�

with D��i�=1−n1,−�, where in the last relation
�X� ,�iD��i��=0 was used. When we take the average, we
obtain

��ĉk�
† ���, ĉk�����+� = �D��i�� ¬ D . �C8�

In order to evaluate the anticommutator in Eq. �C8�, we
have to insert the former ansatz �Eq. �C2�� for ĉk����. Here,
we make an additional approximation by taking into account
only the two first terms in Eq. �C2�. The remaining terms
have explicit spin operators Sq. In the commutator of Eq.
�C8�, they lead to additional contributions with one or two
spin operators. Outside the antiferromagnetic phase, no mag-
netic order is present and also spin correlations are weak.
Therefore, it seems reasonable to neglect these terms. Thus,
we can approximate ĉk���� by

ĉk���� = uk,�ĉk� − i�
q

vk,q,�

�
Jq

4�̂q
2 ��Sq,ck�� · Ṡ−q + Ṡ−q · �Sq,ck��� ,

=uk,�ĉk� +
1

2N
�
q

vk,q,�
Jq

4�̂q
2 �

���

��� �� · �� ���

��
k�

�
k� − 
k�+q�ĉk�+q�
† ĉk��ĉk+q�. �C9�
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Inserting Eq. �C9� and ĉk�
† ��� into Eq. �C8�, we obtain

D = �uk,��2D +
1

�2N�2 �
q�q

v
k,q�,�
* vk,q,�

Jq�

4�̂q�
2

Jq

4�̂q
2 �

��,��,��
�

�,�,�
��� ���� · �� ������� �� · �� ���

� �
k�,k�

�
k� − 
k�+q���
k� − 
k�+q���ĉk+q���
† ĉk���

† ĉk�+q���, ĉk�+q�
† ĉk��ĉk+q��+� . �C10�

To find the renormalization equation for uk,�−��, we use the
same equation, thereby replacing � by �−��. We then ob-
tain

D = �uk,�−���2D +
1

�2N�2 �
q�q

�v
k,q�,�
* + uk,�

* �q���,�����vk,q,�

+ uk,��q��,����
Jq�

4�̂q�
2

Jq

4�̂q
2 � �

��,��,��
�

�,�,�
��� ���� · �� ����

���� �� · �� ��� � �
k�,k�

�
k� − 
k�+q���
k� − 
k�+q�

���ĉk+q���
† ĉk���

† ĉk�+q���, ĉk�+q�
† ĉk��ĉk+q��+� , �C11�

where we have inserted the former renormalization result
�Eq. �C7�� for vk,q,�−��. Restricting ourselves to the lowest-
order contributions in Jq, we can subtract Eq. �C10� from Eq.
�C11� and obtain the renormalization equation which con-
nects uk,�−�� with uk,�,

�uk,�−���2D = �uk,��2D

−
1

�2N�2 �
q�q

Jq�

4�̂q�
2

Jq

4�̂q
2 �

��,��,��
�

�,�,�
��� ���� · �� ����

���� �� · �� ��� � 
�uk,��2�q���,����q��,���

+ �uk,�v
k,q�,�
* �q��,��� + uk,�

* vk,q,��q���,�����

� �
k�,k�

�
k� − 
k�+q���
k� − 
k�+q�

���ĉk+q���
† ĉk���

† ĉk�+q���, ĉk�+q�
† ĉk��ĉk+q��+� .

�C12�

What remains is to evaluate the commutator in Eq. �C12�. In
a final factorization approximation, we find

�uk,�−���2 = �uk,��2 −
1

�2N�2�
q

 Jq

4�̂q
2�2

�
�,�,�

��� �� · �� ���2

� �q��,���
�uk,��2 + �uk,�vk,q,�
* + uk,�

* vk,q,���

� �
k�

�
k� − 
k�+q�2
nk+q�nk� + D� + nk�+q�mk�

− nk+q�� +
1

�2N�2 �
q�q

Jq�

4�̂q�
2

Jq

4�̂q
2 �

�,�,�
��� �� · �� ���

���� �� · �� ��� � 
�uk,��2�q���,����q��,���

+ �uk,�v
k,q�,�
* �q��,��� + uk,�

* vk,q,��q���,�����

� �
k+q − 
k+q+q���
k+q� − 
k+q�+q�
nk+q��nk+q

+ D� + nk+q+q��mk+q − nk+q��� . �C13�

Summing over the spin indices and exploiting that uk,� and
vk,q,� are real, we arrive at expression �60�.

APPENDIX D: FACTORIZATION OF Ṡq,�Ṡ−q,� FOR THE
SUPERCONDUCTING PHASE

The aim of this appendix is to simplify the operator prod-

uct Ṡq,�Ṡ−q,� for the superconducting phase, which enters
expressions �85� for H0,� and H1,�. Neglecting in the nota-
tion again the index �, we start from the expression

ṠqṠ−q =
1

4N
�
��

�
��

��� �� · �� ���

��
i�j

tij�eiqRi − eiqRj�

��
l�m

tlm�e−iqRl − e−iqRm�ĉi�
† ĉj�ĉm�

† ĉl�. �D1�

Note that the four-fermion operator on the right-hand side
can be factorized in two different ways: One can either re-
duce it to operators ĉk�

† ĉk� or to operators ĉk�
† ĉ−k,−�

† and
ĉ−k,−�ĉk,�. The first factorization type was discussed in Ap-
pendix B and leads to a renormalization of 
k. Here, we are
interested in a factorization which renormalizes the super-
conducting order parameter �k. Thereby, we have to pay
attention to the fact that the averaged spin operator vanishes
�Si�=0 outside the antiferromagnetic regime. Moreover, all
local indices in the four-fermion term of Eq. �D1� should be
different from each other. This follows from the former de-
composition of the exchange interaction into eigenmodes of

Lt, where we have implicitly assumed that the operators Ṡq

and Ṡ−q do not overlap in the local space. Otherwise, the
decomposition would be much more involved. However, it
can be shown that these interference terms only make a mi-
nor impact on the results.
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By assuming spin-singlet pairing, we obtain from Eq.
�D1�,

�ṠqṠ−q��sc� =
1

2N
�
k

�
k − 
k−q�2�ĉk↑
† ĉ−k↓

† ĉ−�k−q�↓ĉk−q↑

+ 2ĉk↑
† ĉ−k↓

† ĉk−q↓ĉ−�k−q�↑� . �D2�

According to Sec. VI A, expression �D2� leads to the main
part of the superconducting pair interaction. In a factoriza-
tion approximation, the two contributions in Eq. �D2� can be
combined to

�ṠqṠ−q��sc� =
3

2N
�
k

�
k − 
k−q�2

�
�ĉ−�k−q�↓ĉk−q↑�ĉk↑
† ĉ−k↓

† + h.c.� . �D3�

Using Eq. �D3�, one is led to the renormalization result �Eq.

�91�� for 
̃k
�0� and �̃k

�0� to first order in J.
The above factorization can also be used to derive

second-order renormalization contribution �86� to �k,�−��.
With expression �D2�, we can first simplify the second-order
renormalization H�−��

�2� of H�−��. In analogy to the results of
Appendix B, we arrive at

H�−��
�2� = 3�

q

 Jq

4�̂q
2�2

�q��,���
� 1

N
�
k�

�2
k − 
k+q − 
k−q��ĉk�
† ĉk���Sq · S−q + �Sq · S−q�

1

N
�
k�

�2
k − 
k+q − 
k−q�ĉk�
† ĉk��

− �
q

 Jq

4�̂q
2�2

�q��,����Ṡq · Ṡ−q�
1

N
�
k�

�2
k − 
k+q − 
k−q�ĉk�
† ĉk�

+
3

2N
�
q�


 Jq

4�̂q
2�2

�q��,���� 1

N
�

k���

�2
k� − 
k�+q − 
k�−q��ĉk���
† ĉk�����

� �
k�

�
k − 
k−q�2��ĉk−q�
† ĉk−q��NL��ĉk�

† ĉk��NL −
1

2N
�
q�


 Jq

4�̂q
2�2

�q��,���� 1

N
�

k���

�2
k� − 
k�+q − 
k�−q��ĉk���
† ĉk�����

� �
k

�
k − 
k−q�2��ĉk−q↓ĉk−q↑���ĉk↑
† ĉk↓

† + h.c.� . �D4�

From Eq. �D4�, the second-order renormalization to �k,�−�� can immediately be deduced.

APPENDIX E: BOGOLIUBOV TRANSFORMATION FOR

THE SUPERCONDUCTING HAMILTONIAN H̃

The aim of this appendix is to diagonalize the renormal-

ized Hamiltonian H̃ for the superconducting phase. Accord-

ing to Eq. �92�, the Hamiltonian H̃ reads

H̃ = �
k�


̃kĉk�
† ĉk� − �

k
��̃kĉk,↑

† ĉ−k,↓
† + �̃k

*ĉ−k,↓ĉk,↑� + Ẽ . �E1�

Due to the presence of the Hubbard operators in Eq. �E1�, the
usual Bogoliubov transformation can only be applied ap-
proximately. Let us start by introducing new fermion opera-
tors,

�k
† = Ukĉk,↑

† − Vkĉ−k,↓,

�k
† = Ukĉ−k,↓

† + Vkĉk,↑. �E2�

We require that �k
† and �k

† are eigenmodes of H̃,

L̃�k
† = Ek�k

†, L̃�k
† = Ek�k

† . �E3�

In order to find equations for Uk and Vk, let us insert expres-
sion �E2� for �k

† into the first equation of Eq. �E3�,

UkL̃ĉk,↑
† − VkL̃ĉ−k,↓ = Ek�Ukĉk,↑

† − Vkĉ−k,↓� . �E4�

The two commutators on the left-hand side of Eq. �E4� will

be evaluated separately. For the first one, L̃ĉk�= �H̃ , ĉk,↑
† �, we

obtain

L̃ĉk,↑
† = L̃tĉk,↑

† − �
k�

�̃
k�
* �ĉ−k�,↓ĉk�,↑, ĉk,↑

† � .

Here, the Liouville operator L̃t corresponds to the commuta-

tor with the hopping Hamiltonian H̃t=�k
̃kĉk�
† ĉk�, which

agrees with the fully renormalized Hamiltonian H̃ in the nor-
mal state investigated in Sec. IV. Therefore, we can use

L̃tĉk,↑
† = 
̃kĉk�

† and find using anticommutator relation �3�

L̃ĉk,↑
† = 
̃kĉk,↑

† −
1

	N
�
i�j

�̃
i,j
* �e−ikRjD↑�j�ĉi,↓− e−ikRiSi

−ĉj,↑� . �E5�

The quantity �̃
i,j
* is defined by �̃

i,j
* = 1

N�k�̃
k
*eik�Ri−Rj�, and

D��j�=1−nj,−�=P0+ n̂i� was already given in Eq. �4�. The
main contribution to the second term in Eq. �E5� is caused by
the following process: First, two holes are generated at sites
i and j before the hole at j is annihilated again by a local
creation operator in ĉk↑

† . The arising local projector D��i�
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will be approximated by its average D= �D��j��=1− �nj,−��.
Thus, we obtain

L̃ĉk,↑
† = 
̃kĉk,↑

† −
D
	N

�
i�j

�̃
i,j
* e−ikRjĉi,↓,

= 
̃kĉk,↑
† − D�̃k

*c−k,↓, �E6�

where �̃
i,j
* was Fourier back transformed to �̃

k
*. A corre-

sponding contribution from the last term in Eq. �E5� vanishes
since �Si

−�=0 outside the antiferromagnetic regime. The
evaluation of the second commutator in Eq. �E4� can be done
in analogy to result �E6�,

L̃ĉ−k,↓ = − 
̃kĉ−k,↓ − D�̃kck,↑
† . �E7�

Inserting Eqs. �E6� and �E7� into Eq. �E4� leads to the fol-
lowing two equations for Uk and Vk:

Uk�
̃k − Ek� + VkD�̃k = 0,

− UkD�̃k
* + Vk�
̃k + Ek� = 0. �E8�

The eigenvalue Ek for this system of equations is easily
obtained,

Ek = 	
̃k
2 + D2��̃k�2. �E9�

The expectation value �ĉk,↑
† ĉ−k,↓�H̃, formed with the super-

conducting Hamiltonian H̃, is found by solving Eqs. �E2� for
ĉk,↑

† and ĉ−k,↓. Using property �E3�, one finds

�ĉk,↑
† ĉ−k,↓

† �H̃ =
D2�̃k

*

2Ek

1 −

2

1 + e�Ek
� . �E10�

1 J. G. Bednorz and K. A. Müller, Z. Phys. B: Condens. Matter 64,
189 �1986�.

2 J. Corson, R. Mallozzi, J. Orenstein, J. N. Eckstein, and
I. Bozovic, Nature �London� 398, 221 �1999�.

3 V. J. Emery and S. A. Kivelson, Nature �London� 374, 434
�1995�.

4 D. Pines, Pure Appl. Chem. 282-287, 273 �1997�.
5 M. Randeria, arXiv:cond-mat/9710223 �unpublished�.
6 C. M. Varma, Phys. Rev. B 55, 14554 �1997�.
7 M. R. Norman et al., Nature �London� 392, 157 �1998�.
8 K. M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle,

W. S. Lee, W. Meevasana, Y. Kohsaka, M. Azuma, M. Takano,
H. Takagi, and Z.-X. Shen, Science 307, 901 �2005�.

9 A. Kanigel et al., Nat. Phys. 2, 447 �2006�.
10 K. Terashima, H. Matsui, T. Sato, T. Takahashi, M. Kofu, and

K. Hirota, Phys. Rev. Lett. 99, 017003 �2007�.
11 A. Kanigel, U. Chatterjee, M. Randeria, M. R. Norman,

S. Souma, M. Shi, Z. Z. Li H. Raffy, and J. C. Campuzano,
Phys. Rev. Lett. 99, 157001 �2007�.

12 A. Kanigel, U. Chatterjee, M. Randeria, M. R. Norman, G. Ko-

ren, K. Kadowaki, and J. C. Campuzano, Phys. Rev. Lett. 101,
137002 �2008�.

13 J. Chang et al., New J. Phys. 10, 103016 �2008�.
14 H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Rand-

eria, M. R. Norman, T. Mochikuparallel, K. Kadowakiparallel,
and J. Giapintzakis, Nature �London� 382, 51 �1996�.

15 A. G. Loeser, Z.-X. Shen, D. S. Dessau, D. S. Marshall, C. H.
Park, P. Fournier, and A. Kapitulnik, Science 273, 325 �1996�.

16 K. W. Becker, A. Hübsch, and T. Sommer, Phys. Rev. B 66,
235115 �2002�; for a review see A. Hübsch, S. Sykora, and
K. W. Becker, arXiv:0809.3360 �unpublished�.

17 A. Hübsch and K. W. Becker, Eur. Phys. J. B 33, 391 �2003�.
18 P. Fazekas in Lecture Notes on Electron Correlations and Mag-

netism �World Scientific, Singapore, 1999�.
19 K. Seiler, C. Gros, T. M. Rice, K. Ueda, and D. Vollhardt, J. Low

Temp. Phys. 64, 195 �1986�.
20 J. L. Tallon and J. W. Loram, Physica C 349, 53 �2001�.
21 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,

1175 �1957�.

S. SYKORA AND K. W. BECKER PHYSICAL REVIEW B 80, 014511 �2009�

014511-28


